Как расшифровать маркировку конденсатора и узнать его ёмкость?

Принцип работы конденсаторов

При подсоединении цепи к источнику электрического тока через конденсатор начинает течь электрический ток. В начале прохождения тока через конденсатор его сила имеет максимальное значение, а напряжение – минимальное. По мере накопления устройством заряда сила тока падает до полного исчезновения, а напряжение увеличивается.

В процессе накопления заряда электроны скапливаются на одной пластинке, а положительные ионы – на другой. Между пластинами заряд не перетекает из-за присутствия диэлектрика. Так устройство накапливает заряд. Это явление называется накоплением электрических зарядов, а конденсатор –накопителем электрического поля.

Пробои танталовых конденсаторов

При использовании этих эффективных, но немного капризных устройств, необходимо контролировать появление состояния отказа, поскольку известны случаи их возгорания при отказе. Отказы связаны с тем, что при неправильной эксплуатации пентаоксид тантала меняет аморфную структуру на кристаллическую, то есть из диэлектрика он превращается в проводник. Смена структур может наступить из-за слишком высокого пускового тока. Пробой диэлектрика вызывает повышение токов утечки, которые в свою очередь приводят к пробою самого конденсатора.

Причиной неприятностей, связанных с эксплуатацией танталовых конденсаторов, может быть диоксид марганца. Кислород, который присутствует в этом соединении, вызывает появление локальных очагов возгорания. Пробои с возгоранием характерны для старых моделей. Новые технологии позволяют получать более надежную продукцию.

Пробои, которые произошли при высоких температурах и напряжении, могут вызывать эффект лавины. В этом случае повреждения часто распространяются на большую часть или всю площадь устройства. Если же площадь кристаллизованного пентаоксида тантала небольшая, то часто происходит эффект самовосстановления. Он возможен, благодаря преобразованиям, происходящим в электролите в случае пробоя диэлектрика. В результате всех превращений кристаллизованный участок-проводник оказывается окруженным оксидом марганца, который полностью нейтрализует его проводимость.

Цифро-буквенное обозначение

Если вы разбираете старую советскую аппаратуру, то там все будет довольно просто, – на корпусах так и написано «22пФ», что значит 22 пикофарад, или «1000 мкФ», что значит 1000 микрофарад. Старые советские конденсаторы обычно были достаточного размера чтобы на них можно было писать такие «длинные тексты».

Общемировая, если можно так сказать, цифро-буквенная маркировка предполагает использование букв латинского алфавита:

  • p – пикофарады,
  • n – нанофарады
  • m – микрофарады.

При этом полезно помнить, что если за единицу емкости условно принять пикофарад (хотя, это и не совсем правильно), то буквой «p» будут обозначаться единицы, буквой «n» – тысячи, буквой «m» – миллионы. При этом, букву будут использовать как децимальную точку. Вот наглядный пример, конденсатор емкостью 2200 пФ, по такой системе будет обозначен 2n2, что буквально значит «2,2 нанофарад». Или конденсатор емкостью 0,47 мкФ будет обозначен m47, то есть «0,47 микрофарад».

Будет интересно Конденсатор — простыми словами о сложном

Причем у конденсаторов отечественного производства встречается аналогичная маркировка в кириллице, то есть, пикофарады обозначают буквой «П», нанофарады – буквой «Н», микрофарады -буквой «М». А принцип тот же: 2Н2 – это 2,2 нанофарад, М47 – это 0,47 микрофарад. У некоторых типов миниатюрных конденсаторов «мкФ» обозначается буквой R, которая тоже используется как децимальная точка, например:

1R5 =1,5 мкФ.

Физические величины, используемые в маркировке емкости керамических конденсаторов

Для определения величины емкости в международной системе единиц (СИ) используется Фарад (Ф, F). Для стандартной электрической схемы это слишком большая величина, поэтому в маркировке бытовых конденсаторов используются более мелкие единицы.

Таблица единиц емкости, применяемых для бытовых керамических конденсаторов Наименование единицы

Варианты обозначенийСтепень по отношению к Фараду
МикрофарадMicrofaradмкФ, µF, uF, mF10-6F
НанофарадNanofaradнФ, nF10-9F
ПикофарадPicofaradпФ, pF, mmF, uuF10-12F

Редко применяется внемаркировочная единица миллифарад – 1 мФ (10-3Ф).

Маркировка конденсаторов с помощью численно-буквенного кода.

Маркировка конденсаторов может указывать на следующие параметры: Тип конденсатора, его номинальную емкость, допустимое отклонение емкости, Температурный Коэффициент Емкости(ТКЕ), номинальное напряжение работы.

Порядок маркировки может быть разным — первой строкой может стоять номинальное напряжение, ТКЕ или фирменный знак производителя. ТКЕ может отсутствовать вовсе, номинальное напряжение тоже указываются не всегда! Практически всегда имеется маркировка номинальной емкости. Что касается емкости, то имеются различные способы ее знаковой кодировки. 1. Маркировка емкости с помощью трех цифр. При такой маркировке первые две цифры указывают на значение емкости в пикофарадах, а последняя на разрядность, т. е. количество нулей, которых к первым двум цифрам необходимо добавить. Но если последняя цифра — «9» происходит деление на 10.

КодЕмкость(пФ)Емкость(нФ)Емкость(мкФ)
1091,0(пФ)0,001(нФ)0,000001(мкФ)
1591,5(пФ)0,0015(нФ)0,0000015(мкФ)
2292,2(пФ)0,0022(нФ)0,0000022(мкФ)
3393,3(пФ)0,0033(нФ)0,0000033(мкФ)
4794,7(пФ)0,0047(нФ)0,0000047(мкФ)
6896,8(пФ)0,0068(нФ)0,0000068(мкФ)
10010(пФ)0,01(нФ)0,00001(мкФ)
15015(пФ)0,015(нФ)0,000015(мкФ)
22022(пФ)0,022(нФ)0,000022(мкФ)
33033(пФ)0,033(нФ)0,000033(мкФ)
47047(пФ)0,047(нФ)0,000047(мкФ)
68068(пФ)0,068(нФ)0,000068(мкФ)
101100(пФ)0,1(нФ)0,0001(мкФ)
151150(пФ)0,15(нФ)0,00015(мкФ)
221220(пФ)0,22(нФ)0,00022(мкФ)
331330(пФ)0,33(нФ)0,00033(мкФ)
471470(пФ)0,47(нФ)0,00047(мкФ)
681680(пФ)0,68(нФ)0,00068(мкФ)
1021000(пФ)1(нФ)0,001(мкФ)
1521500(пФ)1,5(нФ)0,0015(мкФ)
2222200(пФ)2,2(нФ)0,0022(мкФ)
3323300(пФ)3,3(нФ)0,0033(мкФ)
4724700(пФ)4,7(нФ)0,0047(мкФ)
6826800(пФ)6,8(нФ)0,0068(мкФ)
10310000(пФ)10(нФ)0,01(мкФ)
15315000(пФ)15(нФ)0,015(мкФ)
22322000(пФ)22(нФ)0,022(мкФ)
33333000(пФ)33(нФ)0,033(мкФ)
47347000(пФ)47(нФ)0,047(мкФ)
68368000(пФ)68(нФ)0,068(мкФ)
104100000(пФ)100(нФ)0,1(мкФ)
154150000(пФ)150(нФ)0,15(мкФ)
224220000(пФ)220(нФ)0,22(мкФ)
334330000(пФ)330(нФ)0,33(мкФ)
474470000(пФ)470(нФ)0,47(мкФ)
684680000(пФ)680(нФ)0,68(мкФ)
1051000000(пФ)1000(нФ)1,0(мкФ)

2. Второй вариант — маркировка производится не в пико, а в микрофарадах, причем вместо десятичной точки ставиться буква µ.

КодЕмкость(мкФ)
µ10,1
µ470,47
11,0
4µ74,7
10µ10,0
100µ100,0

3.Третий вариант.

КодЕмкость(мкФ)
p100,1пФ
Ip50,47пФ
332p332пФ
1HO или 1no1нФ
15H или 15no15,0нФ
33H2 или 33n233,2нФ
590H или 590n590нФ
m150,15МкФ
1m51,5мкФ
33m233,2мкФ
330m330мкФ
10m10,0мкФ

У советских конденсаторов вместо латинской «р» ставилось «п».

Допустимое отклонение номинальной емкости маркируется буквенно, часто буква следует за кодом определяющим емкость(той же строкой).

Буквенное обозначениеДопуск(%)
B± 0,1
C± 0,25
D± 0,5
F± 1
G± 2
J± 5
K± 10
M± 20
N± 30
Q-10…+30
T-10…+50
Y-10…+100
S-20…+50
Z-20…+80

Далее, может следовать(а может и отсутствовать!) маркировка Температурного Коэффициента Емкости(ТКЕ). Для конденсаторов с ненормируемым ТКЕ кодировка производится с помощью букв.

Допуск при -60²…+85²(%) обозначениеБуквенный код
± 10B
± 20Z
± 30D
± 50X
± 70E
± 90F

Конденсаторы с линейной зависимостью от температуры.

ТКЕ(ppm/²C)Буквенный код
100(+130….-49)A
33N
0(+30….-47)C
-33(+30….-80)H
-75(+30….-80)L
-150(+30….-105)P
-220(+30….-120)R
-330(+60….-180)S
-470(+60….-210)T
-750(+120….-330)U
-500(-250….-670)V
-2200K

Далее следует напряжение в вольтах, чаще всего — в виде обычного числа. Например, конденсатор на этой картинке промаркирован двумя строчками. Первая(104J) — означает, что его емкость составляет 0,1мкФ(104), допустимое отклонение емкости не превышает ± 5%(J). Вторая(100V) — напряжение в вольтах.

Кроме того, напряжение конденсаторов может быть так же, закодировано с помощью букв(см. таблицу ниже).

Напряжение (В)Буквеный код
1I
1,6R
3,2A
4C
6,3B
10D
16E
20F
25G
32H
40C
50J
63K
80L
100N
125P
160Q
200Z
250W
315X
400Y
450U
500V

Типы постоянных конденсаторов

Существует большое количество моделей двухполюсников постоянной ёмкости. Рассмотрим наиболее популярные из них:

  • КМ — керамические советские конденсаторы с большим содержанием драгметаллов, применялись в промышленном и военном оборудовании;
  • КСО — двухполюсник со слюдяным диэлектриком, благодаря которому устройство работало на высоких частотах;
  • КТК — керамические трубчатые конденсаторы, чаще всего использовались для высокочастотной техники;
  • МБМ — металлобумажный конденсатор, важный элемент старых усилителей и ламповых устройств.

Советские конденсаторы КМ высоко ценятся среди скупщиков старой радиоаппаратуры. Некоторые модели содержат значительное количество дорогостоящих металлов — серебра, платины, палладия. Стоимость килограмма конденсаторов может достигать 80 000 рублей!

Виды SMD-конденсаторов

Различные наименования SMD-конденсаторов по своему функциональному назначению делятся на три класса:

  • Керамические или плёночные неполярные изделия с номиналами от 10 пикофарад до 10 микрофарад, которые обычно не маркируются;
  • Электролитические конденсаторы, имеющие форму алюминиевого бочонка, предназначенного для поверхностного монтажа;
  • Танталовые конденсаторные детали, имеющие прямоугольный корпус различного размера. Выпускаются с цветовой (черной, желтой или оранжевой) маркировкой, дополненной специальным кодом.

Все перечисленные изделия должны иметь обозначение, выполненное в виде соответствующей стандарту маркировки. Но нередко она по той или иной причине отсутствует (стирается, смывается или не была нанесена при кустарном производстве). В этом случае необходимо предпринять какие-то шаги по их полной идентификации.

Цветовая маркировка керамических конденсаторов

Цветовая маркировка часто используется для конденсаторов с малой площадью поверхности. Цветные полосы наносятся сверху вниз или слева направо. Номинальная емкость обычно указывается 3-5 цветными полосками, две первые из них обозначают определенную цифру. Черный – 0, коричневый – 1, красный – 2, оранжевый – 3, желтый – 4, зеленый – 5, голубой – 6, фиолетовый – 7, серый – 8, белый – 9.

Число, которое составляется из цифр, закодированных в двух первых полосках, умножается на множитель, зашифрованный в третьей полоске. Оранжевая полоса означает 103, желтый – 104, зеленый – 105.

В маркировке может присутствовать четвертая полоса, цвет которой соответствует допустимым отклонениям от номинальной емкости. Белый цвет означает, что допустимы отклонения 10 % в обе стороны, а черный – 20 % в обе стороны. Пятая полоска характеризует номинал напряжения. Красный – 250 В, желтый – 400 В.

Конденсаторы постоянной емкости

Конденсаторы постоянной емкости применяют в различных схемах для разделения переменной и постоянной составляющих тока и сглаживания пульсации напряжений выпрямителя. В сочетании с другими элементами схем конденсаторы образуют резонансные контуры, широко используемые в радиоаппаратуре. Конденсаторы постоянной емкости классифицируют по величине номинальной емкости, классу точности, номинальному рабочему напряжению, назначению, материалу диэлектрика и по конструктивным признакам.

Номинальные величины емкостей конденсаторов установлены ГОСТ 2519 — 60. При изготовлении конденсаторов действительное значение емкости отличается от номинального, обозначенного в маркировке. Допустимое отклонение емкости от номинального называется допуском. По этому принципу все конденсаторы разделяют на пять классов: 0, 1, II, III, IV, допуски их соответственно составляют ±2%; ±5%; ±10%; ±20% и от — 20 до + 50%.

В зависимости от назначения различают контурные, разделительные, блокировочные и фильтровые конденсаторы. По материалу диэлектрика конденсаторы делят на слюдяные, керамические, бумажные, металлобумажные, бумаго-масляные, пленочные, стеклоэмалевые, стеклокерамические, электролитические, воздушные, вакуумные, газонаполненные. По конструктивному признаку конденсаторы подразделяют на трубчатые, дисковые, бочоночные, горшковые, опрессованные и герметизированные, плоские и цилиндрические и т. д.

Независимо от вида конденсатор характеризуется рабочим напряжением. Рабочим напряжением называется напряжение, под которым обкладки конденсатора могут длительно находиться без пробоя разделяющего их диэлектрика. Рабочее напряжение выражают в вольтах. Большое значение для нормальной работы конденсатора имеет сопротивление его изоляции. При малом сопротивлении изоляции возникают утечки, нарушающие нормальную работу схемы. Потери в конденсаторе характеризуются тангенсом угла диэлектрических потерь, выражающим отношение мощности активных потерь к реактивной мощности конденсатора.

В маломощных конденсаторах потери энергии в основном вызываются проводимостью диэлектрика и диэлектрическим гистерезисом, т. е. потерями на поворот полярных молекул в направлении поля при приложении напряжения к обкладкам. Потери в обкладках и выводах малы, поэтому ими обычно пренебрегают. Одной из важнейших характеристик конденсатора является стабильность — неизменность величины емкости конденсатора во время работы. Изменение емкости может быть как временным, так и необратимым. Основным фактором, влияющим на стабильность емкости конденсатора, является воздействие температуры окружающей среды и нагрев конденсатора за счет рассеиваемой на нем мощности. При повышении температуры увеличиваются геометрические размеры материала, что и влечет за собой временное (до возвращения температуры к первоначальному значению) изменение емкости.

Как маркируются большие конденсаторы

Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10-6 фарад.

При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10-3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10-9 Ф и пикофарадах (пФ), составляющих 10-12 Ф.

Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.

Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.

В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 — (6000 х 0,7).

При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.

При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.

При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.

Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.

Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт

При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание

Как обозначаются танталовые конденсаторы?

Главное отличие от остальных видов устройств – использование знака µ для ёмкости. Латинскую букву v добавляют после соответствующего числа, чтобы быстро понять, какое напряжение у прибора. Имеются также дополнительные коды, используемые для следующих параметров:

  • Завод-изготовитель.
  • Дата выпуска.
  • Вариант исполнения.


Маркировка Изучение инструкции и описания на официальном сайте производителя поможет получить дополнительную информацию, связанную с той или иной конкретной моделью конденсатора. Особенно тщательно следует изучить пошаговое руководство по монтажу изделия. Например, при установке на печатную плату, в большинстве случаев пользуются обычной ручной пайкой, либо инфракрасным нагревом со специальной камерой.

Важно! Чтобы предотвратить разрушения оксидного слоя и возникновение прочих дефектов, рекомендуется придерживаться допустимого температурного диапазона, указанного производителем

Особенности хранения

Танталовые конденсаторы способны сохранять рабочие характеристики в течение длительного времени. При соблюдении нужного режима (температура до +40°, относительная влажность 60%) конденсатор при длительном хранении теряет способность к пайке, сохраняя другие рабочие характеристики.

Общие рекомендации по продлению срока службы танталового конденсатора и повышению безопасности его эксплуатации:

  • Соблюдение требований техпроцессов;
  • Многоступенчатый контроль качества продукции;
  • Соблюдение условий хранения;
  • Выполнение требований к организации рабочего места для монтажа устройств на плату;
  • Соблюдение рекомендуемого температурного режима пайки;
  • Правильный выбор безопасных рабочих режимов;
  • Соблюдение требований по эксплуатации.

Строение и технология производства

Тантал и алюминий – приоритетные металлы в производстве конденсаторов. Это объясняется возможностью регулировать толщину непроводящего оксидного слоя, что напрямую влияет на емкость. Сам конденсатор состоит из:

  • положительного (анод) и отрицательного (катод) электродов;
  • диэлектрика – оксидной пленки;
  • электролита – токопроводящей среды, в данном случае твердотельной.

Структура конденсатора

Отличие тантала от алюминия становится понятно, если разобраться в процессе формирования конденсатора. Первая особенность – анод. Спрессованный танталовый порошок нагревают в вакууме для получения характерной «губки».

Формирование диэлектрика

Диэлектрик получается в результате окисления – на поверхности образуется непроводящая пленка. На этом этапе проявляется преимущество металла: толщину слоя можно контролировать, меняя подаваемое напряжение.

Твёрдотельный электролит

Используется диоксид марганца. Технология производства следующая:

  1. «Губка» с диэлектрическим танталовым слоем пропитывается марганцевыми солями.
  2. Структуру подвергают термической обработке. Это нужно для формирования диоксида.

Процедуру повторяют несколько раз до полного покрытия поверхности электролитом.

Особенности катода танталового конденсатора

Внимания заслуживает и отрицательный электрод. Контакт электролита с катодом улучшают при помощи слоя графита, покрытого серебром. Поэтому сам тантал – не единственный редкий и дорогой материал в производстве.

ESR танталовых конденсаторов

Эквивалентное сопротивление (ESR) определяется по частотам:

  • низким – по сопротивлению пленки тантала;
  • высоким – диоксида марганца.

Сопротивление, а с ним и ESR, во втором случае уменьшается с повышением температуры.

Маркировка конденсаторов импортного производства

На сегодняшний день стандарты, которые были приняты от IEC, относятся не только к иностранным видам оборудования, а и к отечественным. Данная система предполагает нанесение на корпус продукции маркировки кодового типа, которая состоит из трех непосредственных цифр.

Две цифры, которые расположены с самого начала, обозначают емкость предмета и в таких единицах, как пикофарадах. Цифра, которая расположена третьей по порядку – это число нулей. Рассмотрим это на примере 555 – это 5500000 пикофарад. В том случае, если емкость изделия является меньше, чем один пикофарад, то с самого начала обозначается цифра ноль.

Есть также и трехзначный вид кодировки. Такой тип нанесения применяется исключительно к деталям, которые являются высокоточными.

Цветовая маркировка импортных конденсаторов

Обозначение наименований на таком предмете, как конденсатор, имеет такой же принцип производства, что и на резисторах. Первые полосы на двух рядах обозначают емкость данного устройства в тех же измерительных единицах. Третья полоса имеет обозначение о количестве непосредственных нулей. Но при этом полностью отсутствуют синий окрас, вместо него применяют голубой.

Важно знать, что если цвета идут одинаковые подряд, то между ними целесообразно осуществить промежутки, чтобы было четко понятно. Ведь в другом случае эти полосы будут сливаться в одну

Спутниковое телевидение

Емкость конденсаторов может измеряться в микрофарадах (uF), нанофарадах (nF), пикофарадах (pF) и обозначаеться специальным кодом. Данная таблица поможет вам разобраться в маркировке обозначений при различных измерительных номиналах и подобрать нужные аналоги для замены. Существует универсальный измерительный прибор для радиокомпонентов. Может измерять индуктивности, ESR и потери электролитических конденсаторов. Проверяет и транзисторы (включая MOSFET), диоды, стабилитроны, кварцы. Тип деталей определяется автоматически и выводит значения на дисплей. В этом обзоре ESR тестер я описывал этот прибор.

uF (мкФ)nF (нФ)pF (пФ)Code (Код)
1uF1000nF1000000pF105
0.82uF820nF820000pF824
0.8uF800nF800000pF804
0.7uF700nF700000pF704
0.68uF680nF680000pF624
0.6uF600nF600000pF604
0.56uF560nF560000pF564
0.5uF500nF500000pF504
0.47uF470nF470000pF474
0.4uF400nF400000pF404
0.39uF390nF390000pF394
0.33uF330nF330000pF334
0.3uF300nF300000pF304
0.27uF270nF270000pF274
0.25uF250nF250000pF254
0.22uF220nF220000pF224
0.2uF200nF200000pF204
0.18uF180nF180000pF184
0.15uF150nF150000pF154
0.12uF120nF120000pF124
0.1uF100nF100000pF104
0.082uF82nF82000pF823
0.08uF80nF80000pF803
0.07uF70nF70000pF703
0.068uF68nF68000pF683
0.06uF60nF60000pF603
0.056uF56nF56000pF563
0.05uF50nF50000pF503
0.047uF47nF47000pF473
0.04uF40nF40000pF403
0.039uF39nF39000pF393
0.033uF33nF33000pF333
0.03uF30nF30000pF303
0.027uF27nF27000pF273
0.025uF25nF25000pF253
0.022uF22nF22000pF223
0.02uF20nF20000pF203
0.018uF18nF18000pF183
0.015uF15nF15000pF153
0.012uF12nF12000pF123
0.01uF10nF10000pF103
0.0082uF8.2nF8200pF822
0.008uF8nF8000pF802
0.007uF7nF7000pF702
0.0068uF6.8nF6800pF682
0.006uF6nF6000pF602
0.0056uF5.6nF5600pF562
0.005uF5nF5000pF502
0.0047uF4.7nF4700pF472
0.004uF4nF4000pF402
0.0039uF3.9nF3900pF392
0.0033uF3.3nF3300pF332
0.003uF3nF3000pF302
0.0027uF2.7nF2700pF272
0.0025uF2.5nF2500pF252
0.0022uF2.2nF2200pF222
0.002uF2nF2000pF202
0.0018uF1.8nF1800pF182
0.0015uF1.5nF1500pF152
0.0012uF1.2nF1200pF122
0.001uF1nF1000pF102
0.00082uF0.82nF820pF821
0.0008uF0.8nF800pF801
0.0007uF0.7nF700pF701
0.00068uF0.68nF680pF681
0.0006uF0.6nF600pF621
0.00056uF0.56nF560pF561
0.0005uF0.5nF500pF52
0.00047uF0.47nF470pF471
0.0004uF0.4nF400pF401
0.00039uF0.39nF390pF391
0.00033uF0.33nF330pF331
0.0003uF0.3nF300pF301
0.00027uF0.27nF270pF271
0.00025uF0.25nF250pF251
0.00022uF0.22nF220pF221
0.0002uF0.2nF200pF201
0.00018uF0.18nF180pF181
0.00015uF0.15nF150pF151
0.00012uF0.12nF120pF121
0.0001uF0.1nF100pF101
0.000082uF0.082nF82pF820
0.00008uF0.08nF80pF800
0.00007uF0.07nF70pF700
0.000068uF0.068nF68pF680
0.00006uF0.06nF60pF600
0.000056uF0.056nF56pF560
0.00005uF0.05nF50pF500
0.000047uF0.047nF47pF470
0.00004uF0.04nF40pF400
0.000039uF0.039nF39pF390
0.000033uF0.033nF33pF330
0.00003uF0.03nF30pF300
0.000027uF0.027nF27pF270
0.000025uF0.025nF25pF250
0.000022uF0.022nF22pF220
0.00002uF0.02nF20pF200
0.000018uF0.018nF18pF180
0.000015uF0.015nF15pF150
0.000012uF0.012nF12pF120
0.00001uF0.01nF10pF100
0.000008uF0.008nF8pF080
0.000007uF0.007nF7pF070
0.000006uF0.006nF6pF060
0.000005uF0.005nF5pF050
0.000004uF0.004nF4pF040
0.000003uF0.003nF3pF030
0.000002uF0.002nF2pF020
0.000001uF0.001nF1pF010

Очень часто для проведения ремонтных работ в электронных устройствах, необходимо иметь в запасе конденсаторы различных номиналов. Так как в магазине зачастую на все случаи жизни приобрести нет возможности, поэтому в большинстве случаев заказываю у китайских товарищей на площадке Aliexpress. В продаже имеются также в большем асортименте электролитические конденсаторы. Можно приобрести набором по 10-20 различных номиналов.

Конденсаторы на Aliexpress

Заключение

Как вы уже догадались, маркировка данных предметов имеет весьма широкий вариант. Особенно большое количество маркировок имеют конденсаторы, которые были произведены за границей. Довольно часто встречаются изделия не большого размера, параметры, которых можно определить с помощью специальных измерений.

Керамические конденсаторы SMD ввиду их малых габаритов иногда маркируются кодом, состоящим из одного или двух символов и цифры. Первый символ, если он есть – код изготовителя (напр. K для Kemet, и т.д.), второй символ – мантисса и цифра показатель степени (множитель) емкости в pF. Например S3 – 4. 7nF (4.7 x 10^3 Pf) конденсатор от неизвестного изготовителя, в то время как KA2 100 pF (1.0 x 10^2 PF) конденсатор от фирмы Kemet.

Конденсаторы изготавливаются с различными типами диэлектриков: NP0, X7R, Z5U и Y5V …. Диэлектрик NP0(COG) обладает низкой диэлектрической проницаемостью, но хорошей температурной стабильностью (ТКЕ близок к нулю). SMD конденсаторы больших номиналов, изготовленные с применением этого диэлектрика наиболее дорогостоящие. Диэлектрик X7R имеет более высокую диэлектрическую проницаемость, но меньшую температурную стабильность. Диэлектрики Z5U и Y5V имеют очень высокую диэлектрическую проницаемость, что позволяет изготовить конденсаторы с большим значением емкости, но имеющих значительный разброс параметров. SMD конденсаторы с диэлектриками X7R и Z5U используются в цепях общего назначения.

В общем случае керамические конденсаторы на

основе диэлектрика с высокой проницаемостью обозначаются

согласно EIA тремя символами, первые два из которых указывают

на нижнюю и верхнюю границы рабочего диапазона температур, а

третий – допустимое изменение емкости в этом диапазоне.

Расшифровка символов кода приведена в

Z5U – конденсатор с точностью

+22, -56% в диапазоне температур от +10 до +85°C.X7R – конденсатор с точностью ±15% в диапазоне

температур от -55 до +125°C.

Маркировка электролитических конденсаторов SMD.

Электролитические конденсаторы SMD часто маркируются их емкостью и рабочим напряжением, например 10 6V – 10 µ F 6V. Иногда этот код используется вместо обычного, который состоит из символа и 3 цифр. Символ указывает рабочее напряжение, а 3 цифры (2 цифры и множитель) дают емкость в pF.

Срез или полоса указывает положительный вывод.

Например, конденсатор маркирован A475 – 4. 7mF 10V

475 = 47 x 10^5pF = 4.7 x 10^6pF = 4. 7mF

Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами как PANASONIC, HITACHI и др. Различают три основных способа кодирования.

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

Код содержит четыре знака (буквы и цифры), обозначающие номинальную емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — емкость в пикофарадах (пф), а последняя цифра — количество нулей.

Возможны 2 варианта кодировки емкости:

а) первые две цифры указывают номинал в пФ, третья — количество нулей;

б) емкость указывают в микрофарадах, знак р выполняет функцию десятичной запятой.

Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может

указываться непосредственно в микрофарадах (мкФ) или 8 пикофарадах (пф) с указанием количества нулей. Например, первая строка — 15, вторая строка — 35V означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

Маркировка Танталовых SMD конденсаторов.

Маркировка танталовых конденсаторов состоит из буквенного кода номинального напряжения в соответствии со следующей таблицей:

За ним следует трехзначный код номинала емкости в pF, в которомпоследняя цифра обозначает количество нулей в номинале. Например, маркировка E105 обозначает конденсатор емкостью 1 000 000pF = 1.0uF с рабочим напряжением 25V.

Емкость и рабочее напряжение танталовых SMD-конденсаторов

обозначаются их прямой записью, например 47 6V – 47uF 6V.

ЗЫ: Взял где взял, обобщил и добавил немного.

(Простите за плохое поведение.) — водка — зло.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий