Lm317 транзистор стабилизатор тока

Линейный стабилизатор напряжения своими руками

В этой статье будет рассмотрена схема мощного линейного стабилизатора напряжения, а так же пошаговая инструкция по его сборки своими руками. Стабилизатор собран на микросхема LM338, она обеспечивает ток до 5 А, имеет защиту короткого замыкания на выходе и перегрева. Схема достаточно проста, поэтому сложностей в сборке возникнуть не должно.

Схема линейного стабилизатора напряжения:

Микросхема LM338 имеет три вывода – вход (in), выход (out) и регулирующий (adj). На вход подаём постоянное напряжение определённой величины, а с выхода снимаем стабилизированное напряжение, величина которого задаётся переменным резистором Р2. Напряжение на выходе регулируется от 1,25 вольт до величины входного, с вычетом 1,5 вольт. Проще говоря, если на входе, например, 24 вольта, то на выходе напряжение будет меняться в пределах от 1,25 до 22,5 вольт.

Подавать на вход более 30 вольт не следует, микросхема может уйти в защиту. Чем больше ёмкость конденсаторов на входе, тем лучше, ведь они сглаживают пульсации. Ёмкость конденсаторов на выходе микросхемы должна быть небольшой, иначе они будут долго сохранять заряд и напряжение на выходе будет регулироваться неверно. При этом каждый электролитический конденсатор должен быть зашунтирован плёночным или керамическим с малой ёмкостью (на схеме это С2 и С4).

При использовании схемы с большими токами микросхему обязательно нужно установить на радиатор, ведь она будет рассеивать на себе всё падение напряжения. Если токи небольшие – до 100 мА, радиатор не потребуется.

Сборка стабилизатора напряжения

Вся схема собирается на небольшой печатной плате размерами 35 х 20 мм, изготовить которую можно методом ЛУТ. Печатная плата полностью готова к печати, отзеркаливать её не нужно. Ниже представлены несколько фотографий процесса.

Дорожки желательно залудить, это уменьшит их сопротивление и защитит от окисления. Когда печатная плата готова – начинаем запаивать детали. Микросхема запаиваться прямо на плату, спинкой в сторону края. Такое расположение позволяет закрепить на радиаторе всю плату с микросхемой.

Переменный резистор выводится от платы на двух проводках. Можно использовать любой переменный резистор с линейной характеристикой. При этом средний его вывод соединяется с любым из крайних, полученные два контакта идут на плату, как видно на фото.

Для подключения проводов входа и выхода удобнее всего использовать соединительную колодку. После сборки необходимо проверить правильность монтажа.

Запуск и испытания линейного стабилизатора

Когда плата собрана, можно переходить к испытаниям. Подключаем на выход маломощную нагрузку, например, светодиод с резистором и вольтметр для контроля напряжения. Подаём напряжение на вход и следим за показаниями вольтметра, напряжение должно меняться при вращении ручки от минимума до максимума. Светодиод при этом будет менять яркость.

Если напряжение регулируется, значит схема собрана правильно, можно ставить микросхему на радиатор и тестировать с более мощной нагрузкой. Такой регулируемый стабилизатор идеально подойдёт для использовании в качестве лабораторного блока питания

Особое внимание стоит уделить выбору микросхемы, ведь её очень часто подделывают

Поддельные микросхемы стоят дёшево, но легко сгорают при токе уже 1 – 1,5 Ампера. Оригинальные стоят дороже, но зато честно обеспечивают заявленный ток до 5 Ампер. Удачной сборки.

Характеристика регулятора

По своему виду приспособления могут изготавливаться в портативном или стационарном исполнении. Устанавливаются они в любом положении: вертикальном, потолочном, горизонтальном.

К основным характеристикам устройств относят следующие параметры:

  1. Плавность регулировки. Обозначает минимальный шаг, с которым происходит изменение величины разности потенциалов на выходе. Чем он плавнее, тем точнее можно выставить значение напряжения на выходе.
  2. Рабочая мощность. Характеризуется значением силы тока, которое может пропускать через себя прибор продолжительное время без повреждения своих электронных связей.
  3. Максимальная мощность. Пиковая величина, которую кратковременно выдерживает устройство с сохранением своей работоспособности.
  4. Диапазон входного напряжения. Это значения входного сигнала, с которым устройство может работать.
  5. Диапазон изменяемого сигнала на выходе устройства. Обозначает значения разности потенциалов, которое может обеспечить устройство на выходе.
  6. Тип регулируемого сигнала. На вход устройства может подаваться как переменное, так и постоянное напряжение.
  7. Условия эксплуатации. Обозначает условия, при которых характеристики регулятора не изменяются.
  8. Способ управления. Выставление выходного уровня сигнала может осуществляться пользователем вручную или без его вмешательства.

Дополнительные возможности

С применением микросборки LM317T схема блока питания становится более функциональной. Конечно, в процессе эксплуатации блока питания, вам потребуется проводить контроль основных параметров. Например, потребляемого тока либо выходного напряжения (особенно это актуально для схемы с регулировкой). Поэтому на лицевой панели нужно смонтировать индикаторы. Кроме того, вам нужно знать, включен ли в сеть блок питания. Обязанность оповещать вас о включении в электросеть лучше возложить на светодиод. Данная конструкция вполне надежная, только питание для него нужно брать с выхода выпрямителя, а не микросборки.

Для контроля тока и напряжения можно использовать стрелочные индикаторы с градуированной шкалой. Но в случае, если хочется сделать блок питания, который не будет уступать лабораторным, можно воспользоваться и ЖК-дисплеями. Правда, для измерения тока и напряжения на LM317T схема блока питания усложняется, так как необходимо использование микроконтроллера и специального драйвера – буферного элемента. Он позволяет подключать к портам ввода-вывода контроллера ЖК-дисплей.

Тогда следующий вопрос. где и в каких приборах можно найти – LM317T. в телевиорах старых или радиоприёмниках может быть? или только а бп?

или чем можно ЛМ317 заменить?

проще — купить ) а вообще видел в акуммуляторных зарядках стоят

нечего им делать в телевизорах и радиоприемниках. если неохота покупать, из того же телевизора или приемника выдрать любой ОУ, мощный транзистор и стабилитрон и мутить на них стаб.

Подобные маломощные стабилизаторы применяются в питании усилителей польских ТВ антен, можно поставить в управление мощным транзистором для увеличения мощности. В ТВ и приемниках обично стоят стабилизаторы на фиксированое напряжение, а не регулируенмые.

Андрей, ага))) а это не слишком геморойно мутить самому стаб?

Тогда следующий вопрос. где и в каких приборах можно найти – LM317T. в телевиорах старых или радиоприёмниках может быть? или только а бп?

или чем можно ЛМ317 заменить?

проще — купить ) а вообще видел в акуммуляторных зарядках стоят

нечего им делать в телевизорах и радиоприемниках. если неохота покупать, из того же телевизора или приемника выдрать любой ОУ, мощный транзистор и стабилитрон и мутить на них стаб.

Подобные маломощные стабилизаторы применяются в питании усилителей польских ТВ антен, можно поставить в управление мощным транзистором для увеличения мощности. В ТВ и приемниках обично стоят стабилизаторы на фиксированое напряжение, а не регулируенмые.

Андрей, ага))) а это не слишком геморойно мутить самому стаб?

Простой двух полярный стабилизатор напряжения на LM317.

За основу устройства взята схема описанная в выше, и добавлено плечо стабилизации отрицательного напряжения.

Характеристики и достоинства двух полярного стабилизатора

  • напряжение стабилизации от 1,2 до 30 В;
  • максимальный ток до 5 А;
  • используется малое количество элементов;
  • простота в выборе трансформатора, так как можно использовать вторичную обмотку без центрального отвода;

Детали устанавливаются на односторонний стеклотекстолит. Транзистор VT1, VT2 и микросхемы LM317 и LM337 следует устанавливать на радиаторы. При установке на общий радиатор следует использовать изолирующие прокладки и втулки.

Область применения

Стабилизаторы на основе микросхемы LM317 используются, чтобы стабилизировать основные показатели технических приборов. Такое устройство легко собрать самостоятельно, а прибор заводского изготовления стоит недорого. Для данного класса имеет отличные эксплуатационные данные и срок эксплуатации, если не будет чрезмерно сильных перепадов электроэнергии.

Недостатком является предел напряжения – не больше 3В. Стабилизатор на основе корпуса ТО 220 – самая доступная модель, которую используют в нескольких областях:

  • бытовые (домашние) сети;
  • лабораторные условия;
  • LED-освещение (светодиоды).

Питание

В этом разделе собраны схемы для питания электронной аппаратуры: стабилизаторы, блоки питания, DC-DC преобразователи и подобные.

Регулируемый блок питания на LM317

24 декабря 2020 — Admin

Одна из простейших схем блоков питания на стабилизаторе LM317. LM317 — линейный регулируемый стабилизатор положительного напряжения. Представляет собой трёхвыводную микросхему: вход, выход и управляющий вывод. Содержит встроенную защиту от перегрузки. Аналоги: LM350, LM338 (отличаются максимальным током нагрузки), отечественный аналог КР142ЕН12А.

Сборка блока питания

13 января 2020 — Admin

Наконец мы добрались до конца серии статей о блоке питания с регулируемым током срабатывания защиты. Тем, кому хватило терпения прочитать всё это, нужно давать приз :). В этой статье — сборка готового изделия, в том числе изготовление печатной платы.

Настройка параметров блока питания

7 января 2020 — Admin

Продолжаем разбирать схему блока питания с регулируемым током защиты. Предыдущая статья была посвящена устранению недостатков защиты нашего блока. На этом, собственно, мы закончили изучать особенности и принципы работы схемы, и в этой статье переходим к её настройке.

Устраняем недостаток защиты блока питания

20 августа 2019 — Admin

Продолжаем разбирать схему блока питания с регулируемым током защиты. В предыдущей статье мы обсудили работу узла защиты. И, как упоминалось, у этой схемы есть один недостаток: после срабатывания защиты напряжение на выходе не падает до нуля. Сегодня поговорим о том, откуда берётся это остаточное напряжение и как с этим бороться.

Схема защиты блока питания

14 августа 2019 — Admin

Движемся дальше в изучении схемы блока питания с регулируемым током защиты, начало тут. В предыдущей статье мы закончили разбирать сам блок питания, теперь перейдём к схеме защиты. Из этой статьи вы узнаете: как «измерить» силу тока, как включить операционный усилитель с положительной обратной связью и как узел защиты управляет работой блока питания.

Мощный выходной транзистор в блоке питания

10 августа 2019 — Admin

Продолжаем исследовать схему блока питания с регулируемым предельным током. Далее речь пойдёт о транзисторе Дарлингтона и защите эмиттерного перехода. А также разберём три ситуации, в которых эта защита может пригодиться.

Операционный усилитель в блоке питания

6 августа 2019 — Admin

Продолжаем разговор о блоке питания с регулируемым током защиты, в этой статье мы кратко разберём принципы работы операционного усилителя в блоке питания, а также реализацию отрицательной обратной связи.

Стабилитрон в блоке питания

5 августа 2019 — Admin

Продолжаем разбирать схему лабораторного блока питания с регулируемым предельным током.

В этой статье речь пройдёт про трансформатор и диодный блок, принцип работы стабилитрона и схему его включения, можность резисторов, а также про делитель напряжения.

Блок питания с регулируемым током защиты

4 августа 2019 — Admin

  • плавная регулировка выходного напряжения от 1 до 20 вольт
  • защита от перегрузки
  • регулируемый ток срабатывания защиты, от 0.1 до 2А

Интегральный стабилизатор напряжения LM317. Описание и применение

Довольно часто возникает необходимость в простом стабилизаторе напряжения. В данной статье приводится описание и примеры применения недорогого (цены на LM317) интегрального стабилизатора напряжения LM317.

Список решаемых задач данного стабилизатора довольно обширен — это и питание различных электронных схем, радиотехнических устройств, вентиляторов, двигателей и прочих устройств от электросети или других источников напряжения, например аккумулятора автомобиля. Наиболее распространены схемы блоков питания на LM317 с регулировкой напряжения.

На практике, с участием LM317 можно построить стабилизатор напряжения на произвольное выходное напряжение, находящееся в диапазоне 3…38 вольт.

Технические характеристики:

  • Напряжение на выходе стабилизатора: 1,2… 37 вольт.
  • Ток выдерживающей нагрузки до 1,5 ампер.
  • Точность стабилизации 0,1%.
  • Имеется внутренняя защита от случайного короткого замыкания.
  • Отличная защита интегрального стабилизатора от возможного перегрева.

Мощность рассеяния и входное напряжение стабилизатора LM317

Напряжение на входе стабилизатора не должно превышать 40 вольт, а так же есть еще одно условие – минимальное входное напряжение должно превышать желаемое выходное на 2 вольта.

Микросхема LM317 в корпусе ТО-220 способна стабильно работать при максимальном токе нагрузки до 1,5 ампер. Если не применять качественный теплоотвод, то это значение будет ниже. Мощность, выделяемая микросхемой в процессе ее работы, можно определить приблизительно путем умножения силы тока на выходе и разности входного и выходного потенциала.

Цена: 3400.00 руб.

Цена: 2700.00 руб.

Цена: 260.00 руб.

Цена: 7000.00 руб.

Максимально допустимое рассеивание мощности без теплоотвода равно приблизительно 1,5 Вт при температуре окружающего воздуха не более 30 градусов Цельсия. При обеспечении хорошего отвода тепла от корпуса LM317 (не более 60 гр.) рассеиваемая мощность может составлять 20 ватт.

При размещении микросхемы на радиаторе необходимо изолировать корпус микросхемы от радиатора, например слюдяной прокладкой. Так же для эффективного отвода тепла желательно использовать теплопроводную пасту.

Подбор сопротивления для стабилизатора LM317

Для точной работы микросхемы суммарная величина сопротивлений R1…R3 должна создавать ток приблизительно 8 мА при требуемом выходном напряжении (Vo), то есть:

R1 + R2 + R3 = Vo / 0,008

Данное значение следует воспринимать как идеальное. В процессе подбора сопротивлений допускается небольшое отклонение (8…10 мА).

Расположение резисторов на плате может быть произвольным, но желательно для лучше стабильности располагать подальше от радиатора микросхемы LM317.

Стабилизация и защита схемы

Емкость С2 и диод D1 не обязательны. Диод обеспечивает защиту стабилизатора LM317 от возможного обратного напряжения, появляющегося в конструкциях различных электронных устройств.

Емкость С2 не только слегка уменьшает отклик микросхемы LM317 на изменения напряжения, но и снижает влияние электрических наводок, при размещении платы стабилизатора вблизи мест имеющих мощное электромагнитное излучение.

Как было уже сказано выше, ограничение максимально возможного тока нагрузки для LM317 составляет 1,5 ампера. Имеются разновидности стабилизаторов схожие по работе со стабилизатором LM317, но рассчитаны на более больший ток нагрузки. К примеру, стабилизатор LM350 выдерживает ток до 3 ампер, а LM338 до 5 ампер.

Обратите внимание

Для облегчения расчета параметров стабилизатора существует специальный калькулятор:

Регулируемый блок питания на стабилизаторе напряжения LM317

Начинающему радиолюбителю просто не обойтись без хотя бы простейшего блока питания. При разработке или настройке того или иного устройства регулируемый блок питания является не заменимым атрибутом. Но если вы начинающий радиолюбитель, и не можете позволить себе дорогой навороченный блок питания, то эта статья поможет вам восполнить вашу нужду

Блок питания на микросхеме LM317T, схема:

В интернете встречается неисчислимое множество схем различных блоков питания. Но даже на первый взгляд легкие схемы, в процессе настройки оказываются не такими уж и легкими. Я рекомендую вам рассмотреть очень простую в настройке, дешевую и надёжную схему блока питания на микросхеме стабилизаторе LM317T, которая регулирует напряжение от 1,3 до 30 В и обеспечивает ток 1А (как правило, этого достаточно для простых радиолюбительских схем) рисунок №1.

VD1 – VD4, VD6, VD7 – Полупроводниковые диоды типа 1N5399 (1.5А 1000В) хотя, вы можете использовать любые другие подходящие по максимальному току 1.5 ампера и напряжению около 50 вольт. Можно также использовать диодный мост с теми же характеристиками. У кого что есть – тот из того и лепит:)VD5 – Обыкновенный светодиод (его не обязательно впаивать) он сигнализирует о включении питания. Диод VD6, защищает схему от бросков тока. VD7 — защищает микросхему от паразитного разряда ёмкости конденсатора С3.

R1 – около 18 КОм (нужно подбирать под ток светодиода).R2 — Можно не впаивать — он необходим в том случае если вам нужно получить нестандартные пределы регулировки напряжения. Вы просто подбираете его таким образом что бы сумма R2 + R3 = 5КОм.

R3 — 5,6 Ком.R4 – 240 Ом.C1 – 2200 мкФ (электролитический)

C2 — 0,1 мкФC3 — 10 мкФ (электролитический)C4 — 1 мкФ (электролитический)DA1 – LM317T

Основным элементом в схеме является микросхема LM317T, все её характеристики вы можете без труда посмотреть в мануале на микросхему. Единственное что следует отдельно отметить, это то что её обязательно необходимо цеплять на радиатор (рисунок №2) что бы микросхема не вышла из строя.

Максимальный ток у неё по документации 1.5 А – но я не рекомендую вгонять её в такие придельные режимы работы.Трансформатор я рекомендую использовать тоже с запасом по току (ток 3А), дабы в случае резкого броска тока он не вышел из строя.Каждый радиолюбитель делает печатные платы как ему самому угодно – но если вам лень её трассировать – можете использовать мой вариант печатной платы рисунок №3, который доступен по этой ссылке или по этой ссылке. Файлы можно открыть с помощью программы Sprint-Layout 5.

Прежде чем начать делать мой вариант разводки платы – ещё раз его просмотрите и проанализируйте!!! Плату я трассировал под способ фотолитографии, так что разверните её как необходимо вам. Я старался сделать плату наиболее универсальной для этой схемы и делал её под свои нужды. Если вы не будите впаивать резистор R2 – то вместо него просто нужна перемычка.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт https://bip-mip.com/

Дополнительные рекомендации по настройки схемы:

Все сопротивления в схеме лучше всего ставить полуваттные, это почти гарантия стабильной работоспособности схемы, даже в предельных условиях эксплуатации. Резистор R2 можно полностью исключить из схемы, я оставлял под него место на те случаи, когда нужно получит нестандартное напряжение. А ещё, хорошенько покопавшись в интернете, я нашел специальный калькулятор для пересчёта LM317, а именно резисторов в цепи управления регулировки напряжения.

Резисторы R3 и R4 – это обыкновенный делитель напряжения, таким образом, мы можем его подобрать под те резисторы, что у нас есть под рукой (в заданных пределах) – это очень удобно и позволяет без особого труда отрегулировать работу LM317T под любое напряжение (верхний придел может варьироваться от 2 до 37 В). К примеру, можно так подобрать резисторы, чтобы ваш блок питания регулировался от 1,2 до 20В – всё зависит от пересчёта делителя R3 и R4. Формулу по которой работает калькулятор, вы можете узнать почитав даташит на ЛМ317Т. В остальном — если всё собрано верно , блок питания сразу же готов к работе.

Схемы стабилизаторов и регуляторов тока

Существуют как минимум четыре варианта изготовления стабилизаторов напряжения на 12 вольт для авто своими руками:

  1. На кренке.
  2. На паре транзисторов.
  3. На операционном усилителе.
  4. На микросхеме импульсного стабилизатора.

Разберем, какие главные особенности имеет каждая из рассматриваемых модификаций.

На кренке

Для сборки своими руками простейшего стабилизатора для светодиодов для авто на 12 вольт потребуются:

  1. Микросхема LM317 или КРЕН8Б (более точнее КР142ЕН8Б), или KIA7812A.
  2. Резистор на 120 Ом.
  3. Печатное плато или перфорированная панель.

На изображениях наглядно представлено расположение основных компонентов схемы простейшего стабилизатора для светодиодов в авто:

На второй схеме на входе с АКБ применяется диод выпрямляющего типа 1n4007.

На двух транзисторах

Одним из самых популярных автомобильных стабилизаторов напряжения для светодиодов на 12 вольт, который также собирается своими руками, на сегодня является схема на двух транзисторах.

Переменное напряжение номиналом 12 вольт поступает на диодный мостик VD1 – VD4, выпрямляется и, проходя через фильтры С1 С2, сглаживается. Далее ток идет на стабилизатор параметрического типа VD1 и проходит к резистору R2. Затем с его движка передается на ключ составного транзистора VT1 VT2. Уровень его открытости определяется состоянием движка резистора переменного типа R2 – в нижнем положении регулятора транзисторы перекрыты и напряжение не поступает в нагрузку, а в верхнем состоянии регулятора R2 оно максимально и транзисторы полностью открыты, напряжение прилагается к нагрузке.

Приведенная модель стабилизатора напряжения для авто чаще всего применяется для дневных ходовых огней на базе светодиодов и позволяет успешно подстраивать параметры бортового тока под характеристики прибора освещения.

На операционном усилителе

Стабилизатор напряжения на 12 вольт для светодиодов в авто имеет смысл изготовить своими руками, когда возникает необходимость для его работы в расширенном диапазоне рабочих параметров. Ниже приведенная схема такого устройства. Главная его особенность в том, что сам усилитель включен в цепь обратной связи и питается прямо с выхода стабилизатора. Прибор характеризуется коэффициентом стабилизации – порядка 1000, при этом сопротивление на выходе – не более 10 мкОм при КПД около 50%. Ток нагрузки в номинале – не менее 200 мкА, при пульсации напряжения на выходе в двойной амплитуде – меньше 60 мкВ.

Среди главных особенностей его работы выделяются:

  1. Рабочий интервал температуры – от -20 до +60 градусов.
  2. Термический дрейф напряжения на выходе – меньше 0,05%.
  3. Возможность повышения напряжения на выходе до 27-30 вольт.

Для решения последней задачи нужно между выводами «7» и «+25» установить резистор на 200 Ом. Каскад транзистора VT1 выполняет роль динамической нагрузки для VT4 и при этом повышает общий коэффициент усиления. Транзистор П702А можно заменить на аналоги П702 или КТ805, при этом КТ603Г – соответственно на П308 или П309, а также КТ201В и КТ203В — на МП103 либо МП106.

На микросхеме импульсного стабилизатора

Когда от стабилизатора напряжения для авто требуется высокий коэффициент полезного действия, лучше собрать своими руками устройство с использование импульсных составляющих. Наиболее распространенной является ниже представленная схема МАХ771 (или аналогов 770, 772).

Стабилизатор импульсного типа на выходе имеет мощность в 15 ватт. Элементы цепи R1 и R2 разделяют показатели напряжения на точках выход. В случае, когда оно становится выше базового, импульсные выпрямители просто снижаются его выходное значение. В обратном случае прибор будет, напротив, увеличивать данный параметр на выходе.

Монтаж и установка своими руками импульсного стабилизатора напряжения для светодиодов в авто разумна, когда его показатель превышает 16 вольт. При возникновении повышенного падения нагрузки в цепь следует внедрить операционный усилитель.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий