Конденсатор емкостью с 2 мкф включен в цепь переменного тока частота которого 50 гц

4 вариант

1. Какой индуктивности катушку надо включить в коле­бательный контур, чтобы при емкости конденсатора 2 мкФ получить частоту 1 кГц?

2. Сила тока в электрической цепи изменяется по закону i = 3cos(100πt + π/3) А. Определите амплитуду силы то­ка, действующее значение силы тока, круговую частоту колебаний и начальную фазу колебаний.

3. Рассчитайте сопротивление конденсатора емкостью 250 мкФ, включенного в цепь переменного тока с часто­той 200 Гц.

4. Индуктивность колебательного контура равна 0,01 Гн, а емкость 1 мкФ. Конденсатор зарядили до разности по­тенциалов 200 В. Какой наибольший ток возникает в контуре в процессе электромагнитных колебаний?

5. Конденсатор и катушка соединены последовательно. Емкостное сопротивление конденсатора 5 кОм. Какой должна быть индуктивность катушки, чтобы резонанс наступил в цепи при частоте колебаний силы тока 20 кГц?

6. В колебательном контуре с индуктивностью 0,4 Гн и емкостью 20 мкФ амплитудное значение силы тока равно 0,1 А. Каким будет напряжение в момент, когда энергия электрического и энергия магнитного полей будут рав­ны? Колебания считать незатухающими.

7. В цепь переменного тока с частотой 400 Гц включена катушка индуктивностью 0,1 Гн. Определите, какой ем­кости конденсатор надо включить в эту цепь, чтобы осу­ществился резонанс.

Ответы на контрольную работа по физике Переменный ток 11 класс1 вариант
1. 12,7 Ом
2. 0,38 мс
3. 40 В; 28,4 В; 10π рад/с; π/6 рад
4. ≈ 3000 об/мин
5. 100 В
6. 135 мкФ
7. 0,047 Дж2 вариант
1. 13,2 Ом
2. 4233 Гц
3. 12 В; 8,5 В; 100π рад/с; 0
4. 24 А
5. 35,5 В
6. 120 мкДж; 40 мкДж
7. 5,04 В3 вариант
1. 4 мкФ
2. 3 А; 2,14 А; 157 рад/с; 0
3. 0,2 мс
4. 7,5 В
5. 25 нс
6. 0,6 Дж
7. u = 310 х sin 100pt; 0; 04 вариант
1. 12,7 мГн
2. 3 А; 2,13 А; 100π рад/ с; π/3 рад
3. 3,2 Ом
4. 2 А
5. 0,04 Гн
6. 10 В
7. 1,6 мкФ

Соединение конденсаторов в батарею: способы выполнения

Существует 3 способа соединения, каждый из которых преследует свою определённую цель:

  1. Параллельное
    – выполняется в случае необходимости увеличить ёмкость, оставив напряжение на прежнем уровне.
  2. Последовательное
    – обратный эффект. Напряжение увеличивается, ёмкость уменьшается.
  3. Смешанное
    – увеличивается как ёмкость, так и напряжение.

Теперь рассмотрим каждый из способов более подробно.

Параллельное соединение: схемы, правила

На самом деле всё довольно просто. При параллельном соединении расчёт общей ёмкости можно вычислить путём простейшего сложения всех конденсаторов. Итоговая формула будет выглядеть следующим образом: С общ = С₁ + С₂ + С₃ + … + С n

. При этом напряжение на каждом их элементов будет оставаться неизменным: V общ = V₁ = V₂ = V₃ = … = V n

.

Соединение при таком подключении будет иметь следующий вид:

Получается, что подобный монтаж подразумевает подключение всех пластин конденсаторов к точкам питания. Такой способ встречается наиболее часто

Но может произойти ситуация, когда важно увеличить напряжение. Разберёмся, каким образом это сделать

Последовательное соединение: способ, используемый реже

При использовании способа последовательного подключения конденсаторов напряжение в цепи возрастает. Оно складывается из напряжения всех элементов и выглядит так: V общ = V₁ + V₂ + V₃ +…+ V n

. При этом ёмкость изменяется в обратной пропорции: 1/С общ = 1/С₁ + 1/С₂ + 1/С₃ + … + 1/С n

. Рассмотрим изменения ёмкости и напряжения при последовательном включении на примере.

Дано: 3 конденсатора с напряжением 150 В и ёмкостью 300 мкф. Подключив их последовательно, получим:

  • напряжение: 150 + 150 + 150 = 450 В;
  • ёмкость: 1/300 + 1/300 + 1/300 = 1/С = 299 мкф.

Внешне подобное подключение обкладок (пластин) будет выглядеть так:

Выполняют такое соединение в том случае, если есть опасность пробоя диэлектрика конденсатора при подаче напряжения в цепь. Но ведь существует и ещё один способ монтажа.

Полезно знать!
Применяют также последовательное и параллельное соединение резисторов и конденсаторов. Это делается с целью снижения подаваемого на конденсатор напряжения и исключения его пробоя. Однако следует учитывать, что напряжения должно быть достаточно для работы самого прибора.

Смешанное соединение конденсаторов: схема, причины необходимости применения

Такое подключение (его ещё называют последовательно-параллельным) применяют в случае необходимости увеличения, как ёмкости, так и напряжения. Здесь вычисление общих параметров немного сложнее, но не настолько, чтобы нельзя было разобраться начинающему радиолюбителю. Для начала посмотрим, как выглядит такая схема.

Составим алгоритм вычислений.

  • всю схему нужно разбить на отдельные части, высчитать параметры которых просто;
  • высчитываем номиналы;
  • вычисляем общие показатели, как при последовательном включении.

Выглядит подобный алгоритм следующим образом:

2 вариант

1. Катушка с индуктивностью 35 мГн включается в сеть переменного тока. Определите индуктивное сопротивле­ние катушки при частоте 60 Гц.

2. Определите частоту собственных колебаний в колеба­тельном контуре, состоящем из конденсатора емкостью 2,2 мкФ и катушки с индуктивностью 0,65 мГн.

3. ЭДС индукции, возникающая в рамке при вращении в однородном магнитном поле, изменяется по закону е = 12sin100πt В. Определите амплитуду ЭДС, действую­щее значение ЭДС, круговую частоту колебаний и на­чальную фазу колебаний.

4. Конденсатор емкостью 800 мкФ включен в сеть пере­менного тока с частотой 50 Гц с помощью проводов, со­противление которых 3 Ом. Какова сила тока в конденса­торе, если напряжение в сети 120 В?

5. В цепь переменного тока с частотой 50 Гц включено ак­тивное сопротивление 5 Ом. Амперметр показывает силу тока 10 А. Определите мгновенное значение напряжения через 1/300 с, если колебания силы тока происходят по закону косинуса.

6. В колебательном контуре индуктивность катушки рав­на 0,2 Гн, а амплитуда колебаний силы тока 40 мА. Найдите энергию электрического поля конденсатора и магнитного поля катушки в момент, когда мгновенное значение силы тока в 2 раза меньше амплитудного значения.

7. Переменный ток возбуждается в рамке, имеющей 200 витков. Площадь одного витка 300 см2 Индукция маг­нитного поля 1,5 ⋅ 10-2 Тл. Определите ЭДС индукции че­рез 0,01 с после начала движения рамки из нейтрального положения. Амплитуда ЭДС равна 7,2 В.

Общая концепция

Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.
Обозначается на схеме двумя параллельными линиями.

Принцип работы

Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.

Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.

Электрическое поле за счет электростатической индукции притягивает разноименные заряды на две противоположные обкладки. Это свойство материи называется емкостью. Емкость есть у всех материалов. И даже у диэлектриков, но у проводников она значительно больше. Поэтому обкладки конденсатора выполнены из проводника.

Основное свойство конденсатора — это емкость. Она зависит от площади пластин, расстояния между ними и материала диэлектрика, которым заполняют пространство между обкладками.

По мере накопления зарядов, поле начинает ослабевать, а сопротивление нарастает. Почему так происходит? Места на обкладках все меньше, одноименные заряды на них действуют друг на друга, а напряжение на конденсаторе становится равным источнику тока. Такое сопротивление называется реактивным, или емкостным. Оно зависит от частоты тока, емкости радиодеталей и проводов.

Когда на обкладках не останется места для электрического тока, то и ток в цепи прекратится. Электростатическая индукция пропадает. Теперь остается электрическое поле, которое держит заряды на своих обкладках и не отпускает их. А электрическому току некуда деваться. Напряжение на конденсаторе станет равным ЭДС (напряжению) источнику тока.

А что будет, если повысить ЭДС (напряжение) источника тока? Электрическое поле начнет все сильнее давить на диэлектрик, поскольку места на обкладках уже нет. Но если напряжение на конденсаторе превысит допустимые знания, то диэлектрик пробьет. И конденсатор станет проводником, заряды освободятся, и ток пойдет по цепи. Как тогда использовать конденсатор для высоких напряжений? Можно увеличить размер диэлектрика и расстояние между обкладками, но при этом уменьшается емкость детали.

Между обкладками находится диэлектрик, который препятствует прохождению постоянного тока. Это именно барьер для постоянного тока. Потому, что постоянный ток создает и постоянное напряжение. А постоянное напряжение может создавать электростатическую индукцию только при замыкании цепи, то есть, когда конденсатор заряжается.

Так конденсатор может сохранять энергию до тех пор, пока к нему не подключится потребитель.

Конденсатор и цепь постоянного тока

Добавим в схему лампочку. Она загорится только во время зарядки.
Еще одна важная особенность — когда происходит процесс зарядки током, то напряжение отстает от тока. Напряжение как бы догоняет ток, поскольку сопротивление нарастает плавно, по мере зарядки. Электрические зарядам нужно время, чтобы переместиться к обкладкам конденсатора. Так называется время зарядки. Оно зависит от емкости, частоты и напряжения.

По мере зарядки, лампочка начинает тусклее светиться.

Лампочка затухает при полной зарядке.

Постоянный электрический ток не проходит через конденсатор только после его зарядки.

Цепь с переменным током

А что если поменять полярность на источнике тока? Тогда конденсатор начнет разряжаться, и снова заряжаться, поскольку меняется полярность источника.

Электростатическая индукция возникает постоянно, если электрический ток переменный. Каждый раз, когда ток начинает менять свое направление, начинается процесс зарядки и разрядки.

Поэтому, конденсатор пропускает переменный электрический ток.

Чем выше частота — тем меньше реактивное (емкостное) сопротивление конденсатора.

3 вариант

1. Определите емкость конденсатора, сопротивление ко­торого в цепи переменного тока частотой 50 Гц равно 800 Ом.

2. В рамке, равномерно вращающейся в однородном маг­нитном поле, индуцируется ток, мгновенное значение ко­торого выражается формулой i = 3sin157t А. Определите амплитуду, действующее значение, круговую частоту ко­лебаний и начальную фазу колебаний силы тока.

3. Рассчитайте период собственных колебаний в колебательном контуре при емкости конденсатора 2 мкФ и ин­дуктивности катушки 0,5 мГн.

4. Рамка площадью 150 см2, содержащая 50 витков про­волоки, равномерно вращается со скоростью 120 об/мин в однородном магнитном поле с магнитной индукцией 0,8 Тл. Найдите амплитуду ЭДС индукции в рамке.

5. Амплитуда напряжения в колебательном контуре 100 В, частота колебаний 5 МГц. Через какое время на­пряжение будет 71 В?

6. Конденсатор емкостью 10 мкФ зарядили до напряже­ния 400 В и подключили к катушке. После этого возник­ли затухающие электрические колебания. Какое количе­ство теплоты выделится в контуре за время, в течение ко­торого амплитуда колебаний уменьшится вдвое?

7. Электроплитка сопротивлением 50 Ом включена в сеть переменного тока с частотой 50 Гц и напряжением 220 В. Запишите уравнения, выражающие зависимость напряжения и силы тока от времени для электроплитки. Чему равно мгновенное значение силы тока и напряже­ния через 1/100 с, если колебания происходят по закону синуса?

Ток при последовательном соединении конденсаторов

Электрический ток бывает двух видов: постоянным и переменным. Для работы ёмкостей это имеет большое значение.

Конденсатор и постоянный ток

Маркировка танталовых smd конденсаторов

Постоянный ток через конденсатор не проходит вообще. Справедливо это и для линейки из последовательно соединённых ёмкостей. Объясняется такой эффект опять же конструкцией самого электронного прибора. Конденсатор имеет две металлические обкладки. В простых электролитических приборах они сделаны из алюминиевой фольги. Между ними расположен тонкий слой диэлектрика (оксид алюминия). Если приложить к обкладкам разность потенциалов (напряжение), то ток потечёт, но только очень короткое время, пока конденсатор полностью ни зарядится. Далее движение носителей заряда прекратится, т.к. они не смогут пройти через диэлектрик. В этот момент можно сказать, что электрический ток равен нулю, и конденсатор его не пропускает.

Конденсатор и переменный ток

При переменном токе носители заряда периодически меняют своё направление. В случае с бытовой сетью изменение происходит 50 раз в секунду. Поэтому говорят, что частота тока в розетке равна 50 Гц.

Конденсатор определённо пропустит переменный ток, но не факт, что весь. Количество носителей заряда, которые смогут пройти через этот электронный прибор, зависит от ёмкости конденсатора, приложенного к нему напряжения и частоты смены направления зарядов. Математически это выражается так:

I = 2pfCU.

Здесь I – это электрический ток с частотой f, проходящий через конденсатор ёмкостью C, если к его обкладкам приложить напряжение U. 2 – просто число, а p = 3.14.

Такая способность конденсаторов ограничивать переменный ток широко применяется в аудиотехнике для построения различных звуковых фильтров. Изменяя ёмкость, можно влиять на частоту сигнала, которую она пропускает.

Фильтр на основе ёмкости

Падение напряженности и общая емкость

Ёмкость конденсатора – это величина, определяющая количество заряда, который он способен в себе сохранить. Выражение имеет следующий вид:

C = q/U.

Здесь q – заряд, накопленный между обкладками конденсатора, U – напряжение к ним приложенное.

Вышеописанная формула представляет общий случай. На практике при расчете ёмкости конденсатора следует учитывать ряд других переменных:

C = E0ES/d,

где:

  • E0 – электрическая постоянная, равная 8,85*10-12 Ф/м,
  • E – диэлектрическая проницаемость среды, в которой располагаются обкладки конденсатора,
  • S – их площадь пересечения,
  • d – расстояние между обкладками.

Стандартная модель конденсатора имеет следующий вид.

Модель конденсатора

Обкладки чаще всего изготовлены из тонкого листового алюминия и скручены в рулон. Делается это для увеличения их площади, ведь так ёмкость конденсатора становится существенно больше.

От выбора диэлектрика, устанавливаемого производителем между обкладками конденсатора, зависит номинальное и максимальное напряжение прибора. Это, в свою очередь, определяет его сферу применения. Если к обкладкам приложить чрезмерную разность потенциалов, то напряжённость поля между ними превысит допустимый уровень, и произойдёт пробой диэлектрика. Подобная ситуация особенно пагубно влияет на электролитические конденсаторы и ионисторы. В случае их пробоя прибор частично или полностью теряет способность накапливать заряд и в дальнейшем становится непригодным для работы.

При последовательном и параллельном включении разных конденсаторов существенно изменяются их характеристики. Данное свойство этих деталей активно используется инженерами-электронщиками и радиолюбителями. Знание принципов подключения позволяет им более продуктивно разрабатывать новые устройства.

Источники

  • https://smolgelios.ru/svet/soedinenie-kondensatorov.html
  • https://amperof.ru/teoriya/posledovatelnoe-soedinenie-kondensatorov.html
  • https://seti.guru/parallelnoe-i-posledovatelnoe-soedinenie-kondensatorov
  • https://odinelectric.ru/knowledgebase/parallelnoe-i-posledovatelnoe-soedinenie

Янв 25, 2021

Где и для чего используются

Как уже говорили, сложно найти схему без конденсаторов. Их применяют для решения самых разных задач:

  • Для сглаживания скачков сетевого напряжения. В таком случае их ставят на входе устройств, перед микросхемами, которые требовательны к параметрам питания.
  • Для стабилизации выходного напряжения блоков питания. В таком случае надо искать их перед выходом.Часто можно увидеть электролитические цилиндрические конденсаторы
  • Датчик прикосновения (тач-пады). В таких устройствах оной из «пластин» конденсаторов является человек. Вернее, его палец. Наше тело обладает определённой проводимостью. Это и используется в датчиках прикосновения.
  • Для задания необходимого ритма работы. Время заряда конденсаторов разной ёмкости отличается. При этом цикл заряд/разряд конденсатора остаётся величиной постоянной. Это и используется в цепях, где надо задавать определённый ритм работы.
  • Ячейки памяти. Память компьютеров, телефонов и других устройств — это огромное количество маленьких конденсаторов. Если он заряжен — это единица, разряжен — ноль.
  • Есть стартовые конденсаторы, которые помогают «разогнать» двигатель. Они накапливают заряд, потом резко его отдают, создавая требуемый «толчок» для разгона мотора.
  • В фотовспышках. Принцип тот же. Сначала накапливается заряд, затем выдаётся, но преобразуется в свет.

Конденсаторы встречаются часто и область их применения широка. Но надо знать как правильно их подключить.

Задачи на переменный электрический ток

Прежде, чем мы перейдем непосредственно к примерам решения задач на переменный ток, скажем кое-что для тех, кто вообще не знает, с какой стороны подступиться к задачам по физике. У нас есть универсальный ответ – памятка по решению. А еще, вам могут пригодиться формулы.

Хотите разобраться в теории? Читайте в нашем блоге, что такое фаза и ноль в электричестве.

Задача№1. Переменный ток

Условие

Вольтметр, включённый в цепь переменного тока,показывает напряжение 220 В, а амперметр – ток 10 А.Чему равны амплитудные значения измеряемых величин?

Решение

Амперметр показывает мгновенные, действующие значения величин. Действующие значения силы тока и напряжения меньше амплитудных в 2 раз. Исходя из этого, рассчитаем:

IA=Iд·2=10·2=14,1 АUA=Uд·2=220·2=311 В

Ответ: 14,1 А; 311 В.

Задача№2. Переменный ток

Условие

Рамка вращается в однородном магнитном поле. ЭДС индукции, возникающая в рамке, изменяется по закону e=80sin25πt. Определите время одного оборота рамки.

Решение

Из условия можно найти угловую частоту вращения рамки:

e=εmsinωte=80sin25πtω=25π радс

Время одного оборота рамки – это период колебаний, связанный с угловой частотой:

T=2πω=2π25π=,08 с

Ответ: 0,08 с.

Больше задач на тему ЭДС в нашем блоге.

Задача№3. Переменный ток

Условие

Сила тока в колебательном контуре изменяется по закону I =0,4sin(400πt) (А). Определите емкосьть конденсатора в контуре, если индуктивность катушки равна 125 мГн.

Решение

Запишем закон изменения силы тока в контуре:

I=IAsinωt

Учитывая исходное уравнение, можно найти угловую частоту и период колебаний:

ω=400π радс

T=2πω=2π400π=5·10-3c

Емкость конденсатора найдем из формулы Томпсона:

T=2πLCT2=4π2LCC=T24π2L=25·10-64·9,85·125·10-3=5·10-6 Ф

Ответ: 5 мкФ.

Задача№4. Переменный ток

Условие

Чему равна амплитуда силы тока в цепи переменного тока частотой 50 Гц, содержащей последовательно соединенные активное сопротивление 1 кОм и конденсатор емкости С = 1 мкФ, если действующее значение напряжения сети, к которой подключен участок цепи, равно 220 В?

Решение

Запишем закон Ома для цепи переменного тока:

I=UZ

Z – полное сопротивление цепи, которое складывается из активного и реактивного сопротивлений.

Z=R2+Xc2Xc=12πϑC

Найдем полное сопротивление, подставив в формулу данные из условия:

X=12·3.14·50·1·10-6=3,18 кОмZ=12·106+3,22·106=3,3 кОм

Далее по действующему значению напряжения найдем амплитудное:

UA=Uд·2=220·2=311 В

Теперь подставим апмлитудное значение напряжения в выражение для закона Ома и вычислим силу тока:

IA=UAZ=3113,3·103=,09 А

Ответ: 0,09 А.

Задача№5. Переменный ток

Условие

Катушка с ничтожно малым активным сопротивлением включена в цепь переменного тока с частотой 50 Гц. При напряжении 125 В сила тока равна 3 А. Какова индуктивность катушки?

Решение

В данной задаче, исходя из условия, можно пренебречь активным сопротивлением катушки. Ее индуктивное сопротивоение равно:

xL=ωL

По закону Ома:

U=IxL=IωL

Отсюда находим индуктивность:

L=UIω=1253·314=,13 Гн

Ответ: 0,13 Гн.

Все еще мало задач? Держите несколько примеров на мощность тока.

Последовательное соединение конденсаторов.

Если же соединение конденсаторов в батарею производится в виде цепочки и к точкам включения в цепь непосредственно присоединены пластины только первого и последнего конденсаторов, то такое соединение конденсаторов называется последо­вательным (рисунок 3).

Рисунок 2. Последовательное соединение конденсаторов.

При последовательном соединении все конденса­торы заряжаются одинаковым количеством электричества, так как непосредственно от источника тока заряжаются только крайние пластины (1 и 6), а остальные пластины (2, 3, 4 и 5) заря­жаются через влияние. При этом заряд пла­стины 2 будет равен по величине и противо­положен по знаку за­ряду пластины 1, заряд пластины 3 будет равен по величине и противоположен по знаку заряду пла­стины 2 и т. д.

Напряжения на различных конденсаторах будут, вообще говоря, различными, так как для заряда одним и тем же количеством электричества конденсаторов различной емкости всегда требуются различные напряжения. Чем меньше емкость конденсатора, тем большее напряжение необходимо для того, чтобы зарядить этот конденсатор требуемым количеством электричества, и наоборот.

Таким образом, при заряде группы конденсаторов, соединенных последовательно, на конденсаторах малой емкости напряжения будут больше, а на конденсаторах большой емкости — меньше.

Аналогично предыдущему случаю можно рассматривать всю группу конденсаторов, соединенных последовательно, как один эквивалентный конденсатор, между пластинами которого существует напряжение, равное сумме напряжений на всех конденсаторах группы, а заряд которого равен заряду любого из конденсаторов группы.

Возьмем самый маленький конденсатор в группе. На нем должно быть самое большое напряжение. Но напряжение на этом конденсаторе составляет только часть общего напряже­ния, существующего на всей группе конденсаторов. Напря­жение на всей группе больше напряжения на конденсаторе, имеющем самую малую емкость. А отсюда непосредственно следует, что общая емкость группы конденсаторов, соединен­ных последовательно, меньше емкости самого малого конден­сатора в группе.

Для вычисления общей емкости при последовательном со­единении конденсаторов удобнее всего пользоваться следую­щей формулой:

Для частного случая двух последовательно соединенных конденсаторов формула для вычисления их общей емкости будет иметь вид:

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий

Adblock
detector