Как протекает ток в делителе напряжения

Пример – делитель для осциллографа

Если мы хотим получить осциллограмму высокого напряжения, то сразу приходит в голову делитель напряжения. Изготавливаем делитель, подключаем его вход к источнику высоковольтного сигнала, а выход к входу осциллографа. Должны получить на входе осциллографа уменьшенную копию входного сигнала.

Если наш сигнал имеет достаточно большую частоту или просто резкие фронты (например, меандр), то ничего не получится. Осциллограмма не будет похожа на изначальный сигнал. Причина в том, что осциллограф имеет некоторую входную емкость, которая образует с эквивалентным выходным сопротивлением делителя фильтр нижних частот. Все высшие гармоники сигнала подавляются. Кроме того этот фильтр формирует фазовый сдвиг. Это бывает существенным для многолучевых осциллографов, когда мы анализируем соотношения сигналов. Чтобы этого избежать, резистор R1 нужно зашунтировать конденсатором.

Емкость шунтирующего конденсатора определяется исходя из того соображения, что отношение модуля сопротивления переменному току шунтирующего конденсатора к модулю сопротивления переменному току входной емкости осциллографа должно быть равно отношению сопротивлений резисторов R1 и R2. А модуль сопротивления переменному току обратно пропорционален емкости конденсатора.

[Емкость шунтирующего конденсатора, пФ] = [Входная емкость осциллографа, пФ] * [Сопротивление резистора R2, Ом] / [Сопротивление резистора R1, Ом]

(читать дальше…) :: (в начало статьи)

 1  2 

:: ПоискТехника безопасности :: Помощь

 

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи.

Еще статьи

Практика проектирования электронных схем. Самоучитель электроники….
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы….

Преобразователь однофазного напряжения в трехфазное. Принцип действия,…
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех…

Качественный усилитель мощности звуковой, низкой частоты, звука, нч. В…
Качество усилителей звуковой частоты. Обзор, схемы….

Как не спутать плюс и минус? Защита от переполярности. Описание…
Схема защиты от неправильной полярности подключения (переполюсовки) зарядных уст…

Применение тиристоров (динисторов, тринисторов, симисторов). Схемы. Ис…
Тиристоры в электронных схемах. Тонкости и особенности использования. Виды тирис…

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида…
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при…

Соединение светодиодов. Последовательное, параллельное включение оптоэ…
Как правильно включить светодиод, соединять их и входные цепи приборов на их осн…

Параллельное, последовательное соединение резисторов. Расчет сопротивл…
Вычисление сопротивления и мощности при параллельном и последовательном соединен…

Делитель напряжения на резисторах

Давайте разберем самый простой делитель напряжения, состоящий из двух резисторов. Эти два резистора соединим последовательно и подадим на них напряжение. Напряжение может быть как постоянное, так и переменное.

Подавая напряжение на эту цепь, состоящую из двух резисторов, у нас получается, что цепь становится замкнутой, и в цепи начинает течь электрический ток с какой-то определенной силой тока, которая зависит от номиналов резисторов.

Итак, мы знаем, что при последовательном соединении сила тока в цепи одинакова. То есть какая сила тока протекает через резистор R1, такая же сила тока течет и через резистор R2. Как же вычислить эту силу тока? Оказывается, достаточно просто, используя закон Ома: I=U/R.

Так как наши резисторы соединены последовательно, то и их общее сопротивление будет выражаться формулой

То есть в нашем случае мы можем записать, что

Как найти напряжение, которое падает на резисторе R2?

Так как ток для обоих резисторов общий, то согласно закону Ома

Подставляем вместо I формулу

и получаем в итоге

Для другого резистора ситуация аналогичная. На нем падает напряжение

Для него формула запишется

Давайте докажем, что сумма падений напряжений на резисторах равняется напряжению питания, то есть нам надо доказать, что U=UR1 +UR2 . Подставляем значения и смотрим.

что и требовалось доказать.

Эта формула также работает и для большого количества резисторов.

На схеме выше мы видим резисторы, которые соединены последовательно. Чему будет равняться Uобщ ? Так как резисторы соединены последовательно, следовательно, на каждом резисторе падает какое-то напряжение. Сумма падений напряжения на всех резисторах будет равняться Uобщ . В нашем случае формула запишется как

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

Пример  №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление  R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:

Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».

  • Таким образом, протекающий общий ток в цепи  можно определить как:
  • I = I1 + I2
  • Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:
  • Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА
  • Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА
  • Таким образом, общий ток будет равен:
  • I = 0,545 мА + 0,255 мА = 0,8 мА
  • Это также можно проверить, используя закон Ома:
  • I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)
  • где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)
  • И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.

Параллельное соединение резисторов — онлайн калькулятор

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.

Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора входящего в параллельное соединение.

Как работает

На практике использование устройств несколько сложнее, чем просто рассчитать требуемые значения для элементов. Использование схемы замещения для делителей напряжения усложняет реалистичный учет фазовых и амплитудных характеристик. Эта проблема может быть решена исключительно экспериментальным путём. Затруднительно так сделать только если наблюдаются очень высокие частоты.

Графическое изображение работы

В качестве доступной альтернативы используется экспериментальное определение реакции схемы на прямоугольный импульс. Его суть — наблюдение за состоянием, когда на входе происходит скачкообразное изменение напряжения. При единичном воздействии можно наблюдать особенности работы благодаря переходной функции измерительной схемы.

Реакция определяется двумя способами:

  • Первый предполагает, что на вход полностью собранной схемы подают периодически импульсы с амплитудой в 100В (50 или 100 раз в секунду). Фронт их нарастания должен составлять меньше 10-9 с. Получение таких импульсов не является делом сложным. Для этого можно воспользоваться механическими коммутаторами с герконом или ртутным реле. На выходе схемы измеряется реакция посредством осциллографа, на котором присутствует широкополосной усилитель, величина пропускания которого составляет до 109 Гц.
  • Второй способ используется для схем, у которых напряжение составляет несколько десятков киловольт. В таком случае делают крутой срез посредством малоиндуктивного искрового промежутка, помещенного в условия сжатого газа. На выходе с помощью обычного осциллографа записывается реакция. Также вместо среза часто обращаются к использованию разряда заряженного кабеля и волнового сопротивления через искровой промежуток.

Описывая работу делителей напряжения, нельзя обойти вниманием постоянную времени. Чтобы правильно измерять показатели быстропротекающих процессов, необходимо добиться различия в 5-10 раз

Постоянная времени делителя должна быть меньше характеристического времени процесса. Если не получить разницу в 5-10 раз, то будут фиксироваться различные искажения. Наиболее вероятные — это затягивание фронта вместе с уменьшением амплитуды сигнала на выходе в сравнении с расчетными показателями.

Важно! При выборе делителя в первую очередь внимание обращают на его возможное влияние, оказываемое на источник напряжения, равно как и искажения основного параметра при измерении. Например, в случае использования обычных ГИН допустимыми считаются резисторные, емкостные и смешанные устройства, но только при соблюдении оговоренных условий. К таковым относятся значения емкости плеча высокого напряжения и сопротивление

К таковым относятся значения емкости плеча высокого напряжения и сопротивление.

Вам это будет интересно Виды, устройство и принцип работы ползункового реостата

Как работает делитель напряжения на практике

Итак у нас имеются вот такие два резистора и наш любимый мультиметр:

Замеряем сопротивление маленького резистора, R1=109,7 Ом.

Замеряем сопротивление большого резистора R2=52,8 Ом.

Выставляем на блоке питания ровно 10 Вольт. Замер напряжения производим с помощью мультиметра.

Цепляемся блоком питания за эти два резистора, запаянные последовательно. Напомню, что на блоке ровно 10 Вольт. Показания амперметра на блоке питания тоже немного неточны. Силу тока мы будем замерять в дальнейшем также с помощью мультиметра.

Замеряем падение напряжения на большом резисторе, который обладает номиналом в 52,8 Ом. Мультиметр намерял 3,21 Вольта.

Замеряем напряжение на маленьком резисторе номиналом в 109,7 Ом. На нем падает  напряжение 6,77 Вольт.

Ну что, с математикой, думаю, у всех в порядке. Складываем эти два значения напряжения. 3,21+6,77 = 9,98 Вольт. А куда делись еще 0,02 Вольта? Спишем на погрешность щупов и средств измерений. Вот наглядный пример того, что мы смогли разделить напряжение на два разных напряжения. Мы еще раз убедились, что сумма падений напряжений на каждом резистора равняется напряжению питания, которое подается на эту цепь.

Двухкаскадный УЗЧ на транзисторах разной структуры

Он выполнен с непосредственной связью между каскадами и глубокой отрицательной обратной связью по постоянному току, что делает его режим независящим от температуры окружающей среды. Основа температурной стабилизации — резистор R4, работаю щий аналогично резистору R3 в предыдущей конструкции

Усилитель более «чувствительный” по сравнению с однокаскадным — коэффициент усиления по напряжению достигает 20. На входные гнезда можно подавать переменное напряжение амплитудой не более 30 мВ, иначе возникнут искажения, прослушиваемые в головном телефоне.

Проверяют усилитель, прикоснувшись пинцетом (или просто пальцем) входного гнезда Х1 — в телефоне раздастся громкий звук. Усилитель потребляет ток около 8 мА.

Рис. 2. Схема двухкаскадного усилителя ЗЧ на транзисторах разной структуры.

Эту конструкцию можно использовать для усиления слабых сигналов например, от микрофона. И конечно он позволит значительно усилить сигнал 34, снимаемый с нагрузки детекторного приемника.

Схема традиционного резисторного делителя напряжения

Для применения делителя напряжения нам надо уметь рассчитывать три величины: напряжение на выходе делителя, его эквивалентное выходное сопротивление, его входное сопротивление. С напряжением все понятно. Эквивалентное выходное сопротивление скажет нам, насколько изменится напряжение на выходе с изменением тока нагрузки делителя. Если эквивалентное выходное сопротивление равно 100 Ом, то изменение тока нагрузки на 10 мА приведет к изменению напряжения на выходе на 1 В. Входное сопротивление показывает, насколько делитель нагружает источник сигнала или источник питания. Дополнительно посчитаем коэффициент ослабления сигнала. Он может пригодиться при работе с сигналами сложной формы.

схема и расчёт [Амперка / Вики]

Для того, чтобы получить из исходного напряжения лишь его часть используется делитель напряжения (voltage divider). Это схема, строящаяся на основе пары резисторов.

В примере, на вход подаются стандартные 9 В. Но какое напряжение получится на выходе Vout? Или эквивалентный вопрос: какое напряжение покажет вольтметр?

Ток, протекающий через R1 и R2 одинаков пока к выходу Vout ничего не подключено. А суммарное сопротивление пары резисторов при последовательном соединении:

Таким образом, сила тока протекающая через резисторы

Теперь, когда нам известен ток в R2, расчитаем напряжение вокруг него:

Или если отавить формулу в общем виде:

Так с помощью пары резисторов мы изменили значение входного напряжения с 9 до 5 В. Это простой способ получить несколько различных напряжений в одной схеме, оставив при этом только один источник питания.

Применение делителя для считывания показаний датчика

Другое применение делителя напряжения — это снятие показаний с датчиков. Существует множество компонентов, которые меняют своё сопротивление в зависимости от внешних условий. Так термисторы меняют сопротивление от нуля до определённого значения в зависимости от температуры, фоторезисторы меняют сопротивление в зависимости от интенсивности попадающего на них света и т.д.

Если в приведённой выше схеме заменить R1 или R2 на один из таких компонентов, Vout будет меняться в зависимости от внешних условий, влияющих на датчик. Подключив это выходное напряжение к аналоговому входу Ардуино, можно получать информацию о температуре, уровне освещённости и других параметрах среды.

Значение выходного напряжения при определённых параметрах среды можно расчитать, сопоставив документацию на переменный компонент и общую формулу расчёта Vout.

Подключение нагрузки

С делителем напряжения не всё так просто, когда к выходному подключения подключается какой-либо потребитель тока, который ещё называют нагрузкой (load):

В этом случае Vout уже не может быть расчитано лишь на основе значений Vin,

R1 и R2: сама нагрузка провоцирует дополнительное падение напряжения (voltage drop). Пусть нагрузкой является нечто, что потребляет ток в 10 мА при предоставленных 5 В. Тогда её сопротивление

В случае с подключеной нагрузкой следует рассматривать нижнюю часть делителя, как два резистора соединённых параллельно:

Подставив значение в общую формулу расчёта Vout, получим:

Как видно, мы потеряли более полутора вольт напряжения из-за подключения нагрузки. И тем ощутимее будут потери, чем больше номинал R2 по отношению к сопротивлению L. Чтобы нивелировать этот эффект мы могли бы использовать в качестве R1 и R2 резисторы, например, в 10 раз меньших номиналов.

Пропорция сохраняется, Vout не меняется:

А потери уменьшатся:

Однако, у снижения сопротивления делящих резисторов есть обратная сторона медали. Большое количество энергии от источника питания будет уходить в землю. В том числе при отсоединённой нагрузке. Это небольшая проблема, если устройство питается от сети, но — нерациональное расточительство в случае питания от батарейки.

Кроме того, нужно помнить, что резисторы расчитаны на определённую предельную мощьность. В нашем случае нагрузка на R1 равна:

А это в 4-8 раз выше максимальной мощности самых распространённых резисторов! Попытка воспользоваться описанной схемой со сниженными номиналами и стандартными 0.25 или 0.5 Вт резисторами ничем хорошим не закончится. Очень вероятно, что результатом будет возгарание.

Применимость

Делитель напряжения подходит для получения необходимого заниженного напряжения в случаях, когда подключенная нагрузка потребляет небольшой ток (доли или единицы миллиампер). Примером подходящего использования является считывание напряжения аналоговым входом микроконтроллера, управление базой/затвором транзистора.

Делитель не подходит для подачи напряжения на мощных потребителей вроде моторов или светодиодных лент.

Чем меньшие номиналы выбраны для делящих резисторов, тем больше энергии расходуется впустую и тем выше нагрузка на сами резисторы. Чем номиналы больше, тем больше и дополнительное (нежелательное) падение напряжения, провоцируемое самой нагрузкой.

Если потребление тока нагрузкой неравномерно во времени, Vout также будет неравномерным.

wiki.amperka.ru

Нелинейные делители

Мы упомянули, что к нелинейным делителям относится параметрический стабилизатор. В простейшем виде он состоит из резистора и стабилитрона. У стабилитрона условное обозначение на схеме похоже на обычный полупроводниковый диод. Разница лишь в наличии дополнительной черты на катоде.

Расчет происходит, отталкиваясь от Uстабилизации стабилитрона. Тогда если у нас есть стабилитрон на 3.3 вольта, а Uпитания равно 10 вольт, то ток стабилизации берут из даташита на стабилитрон. Например, пусть он будет равен 20 мА (0.02 А), а ток нагрузки 10 мА (0.01 А).

Разберемся как работает такой стабилизатор. Стабилитрон включается в цепь в обратном включении, то есть если Uвыходное ниже Uстабилизации – ток через него не протекает. Когда Uпитания повышается до Uстабилизации, происходит лавинный или туннельный пробой PN-перехода и через него начинает протекать ток, который называется током стабилизации. Он ограничен резистором R1, на котором гасится разница между Uвходным и Uстабилизации. При превышении максимального тока стабилизации происходит тепловой пробой и стабилитрон сгорает.

Кстати иногда можно реализовать стабилизатор на диодах. Напряжение стабилизации тогда будет равно прямому падению диодов или сумме падений цепи диодов. Ток задаете подходящий под номинал диодов и под нужды вашей схемы. Тем не менее такое решение используется крайне редко. Но такое устройство на диодах лучше назвать ограничителем, а не стабилизатором. И вариант такой же схемы для цепей переменного тока. Так вы ограничите амплитуду переменного сигнала на уровне прямого падения – 0,7В.

Вот мы и разобрались что это такое делитель напряжения и для чего он нужен. Примеров, где применяется любой из вариантов рассмотренных схем можно привести еще больше, даже потенциометр в сущности является делителем с плавной регулировкой коэффициента передачи, и часто используется в паре с постоянным резистором. В любом случае принцип действия, подбора и расчетов элементов остается неизменным.

Напоследок рекомендуем посмотреть видео, на котором более подробно рассматривается, как работает данный элемент и из чего состоит:

Важность потенциометров

Как и в случае с фиксированным делителем напряжения, коэффициент деления напряжения потенциометра строго зависит от сопротивления, а не от величины приложенного напряжения. Другими словами, если ручка потенциометра или рычаг перемещается в положение 50 процентов (точное центральное положение), падение напряжения между ползунком и любым крайним выводом будет составлять ровно 1/2 от приложенного напряжения, независимо от того, что с этим напряжением происходит, или каково полное сопротивление потенциометра. Другими словами, потенциометр работает как регулируемый делитель напряжения, где коэффициент деления напряжения устанавливается положением ползунка.

Это применение потенциометра является очень полезным средством получения изменяемого напряжения от источника фиксированного напряжения, такого как аккумулятор. Если для схемы, которую вы собираете, требуется определенная величина напряжения, которая меньше, чем значение напряжения доступной батареи, вы можете подключить внешние выводы потенциометра к этой батарее и «выбрать» для использования в вашей цепи любое необходимое напряжение между ползунком и одним из внешних выводов потенциометра:

Рисунок 16 – Применение потенциометра

При таком использовании название «потенциометр» имеет смысл: он «измеряет» (контролирует) приложенный к нему потенциал (напряжение), создавая изменяемый коэффициент деления напряжения. Такое использование трехполюсного потенциометра в качестве переменного делителя напряжения очень популярно в схемотехнике.

Что такое делитель тока

Какие ассоциации у вас возникают при словосочетании “делитель тока”? У меня сразу возникает ассоциация с делителем потока. Давайте представим себе реку, у которой очень большой поток.

Это поток воды бежит с очень большой скоростью! Он смывает на своем пути камни, землю, деревья. Представьте, что эта река находится рядом с вашим домом. Через год-два ваш дом смоет под чистую! Чтобы этого не произошло, надо ослабить течение реки, чтобы ее поток был слабый. Например как здесь:

Но как это сделать? А почему бы нам не прорыть большой канал, чтобы бОльшая часть воды текла через него. А это хорошая идея не так ли?

Весь смак заключается в том, что в каждой отдельной речке скорость воды будет меньше. В электротехнике и электронике все тоже самое! Река – это провод, сила потока – это сила тока, ширина реки – сопротивление, напряжение – угол наклона реки. Все элементарно и просто!

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий