Как посчитать ток короткого замыкания для трансформатора

Какие бывают виды

Короткое замыкание. Каждый слышал это словосочетание. Многие видели надпись «Не закорачивать!» Часто, когда ломается какой-нибудь электроприбор, говорят: «Коротнуло!» И несмотря на негативный оттенок этих слов, профессионалы знают, что короткое замыкание – не печальный приговор. Иногда с коротким замыканием (КЗ) бороться бессмысленно, а порой и принципиально невозможно. В этой статье будут даны ответы на самые важные вопросы: что такое короткое замыкание и какие виды КЗ встречаются в технике.

Будет интересно Что такое статическое электричество и как от него избавиться

Начнем рассматривать эти вопросы под необычным углом – узнаем, в каких случаях короткие замыкания неизбежны и где они не играют роль повреждений. Возьмем за оба конца обыкновенный металлический провод. Соединим концы вместе. Провод замкнулся накоротко – произошло КЗ. Но так как в цепи отсутствуют источники электрической энергии и нагрузка, такое короткое замыкание никакого вреда не несет. В некоторых областях электротехники КЗ, которое мы рассмотрели, играет на руку, например, в электрических аппаратах и электрических машинах.

Взглянем на однофазное реле или пускатель, в конструкции которых есть магнитная система с подвижными частями – электромагнит, притягивающий якорь. Из-за постоянно меняющейся полярности тока, текущего в обмотках электромагнита, его магнитный поток периодически становится равен нулю, что вызывает дребезжание якоря, появляются вибрации и характерное, знакомое всем электрикам гудение. Чтобы избавиться от этого явления, на торец сердечника электромагнита или якоря прикрепляют короткозамкнутый виток – кольцо или прямоугольник из меди или алюминия.

Из-за явления электромагнитной индукции в витке создается ток, создающий свой магнитный поток, компенсирующий пропадание основного магнитного потока, создаваемого электромагнитом, что приводит к уменьшению или исчезновению вибраций, разрушающих конструкцию.

Так же на руку играет короткое замыкание и в роторе асинхронного электродвигателя. Благодаря взаимодействию магнитного поля, создаваемого обмотками статора, с короткозамкнутым ротором, в роторе по уже упомянутому закону появляются свои токи, создающие свое поле, что приводит ротор во вращение

Конечно, важно грамотное проектирование электродвигателя или электрического аппарата, чтобы токи, протекающие в короткозамкнутых элементах, не приводили к перегреву и порче изоляции основных обмоток

Возгорание розетки

Подобным образом понятие «короткое замыкание» используется применительно к трансформаторам. Люди, так или иначе связанные с энергетикой, знают, что одна из важнейших характеристик трансформатора – это напряжение короткого замыкания, UКЗ, измеряемое в процентах. Возьмем трансформатор. Одну из его обмоток, скажем, низшего напряжения (НН) закоротим амперметром, сопротивление которого, как известно, принимается равным нулю. Обмотку высшего напряжения (ВН) подключаем к источнику напряжения. Повышаем напряжение на обмотке ВН до тех пор, пока ток в обмотке НН не станет равным номинальному, фиксируем это напряжение.

Делим его на номинальное напряжение высшей стороны, умножаем на 100%, получаем UКЗ. Эта величина характеризует потери мощности в трансформаторе и его сопротивление, от которого зависит ток короткого замыкания, ведущий к повреждениям. Поговорим наконец о коротких замыканиях, несущих негативные последствия. Такие короткие замыкания появляются, когда ток от источника питания протекает не через нагрузку, а только через провода, обладающие ничтожно маленьким сопротивлением. Например, трехфазный кабель питается от трансформатора, и одним неосторожным движением ковша экскаватора происходит его повреждение – две фазы закорачиваются через ковш. Такое КЗ называют двухфазным. Аналогично по количеству замкнутых фаз называют другие КЗ.

Однофазное замыкание на землю в сетях с изолированной нейтралью не является коротким, но может представлять угрозу жизни живых существ. Металлическим называют КЗ, в котором переходное сопротивление равно нулю – например, при болтовом или сварочном соединении. Токи КЗ в зависимости от напряжения и вида повреждения могут достигать тысяч и сотен тысяч ампер, приводить к пожарам и колоссальным электродинамическим усилиям, «выворачивающим» шины и провода. Защита от КЗ может осуществляться автоматическими выключателями или предохранителями, а в высоковольтных сетях – средствами релейной защиты и автоматики.

Защита блока питания от короткого замыкания.

Характеристика напряжения короткого замыкания

Рассматриваемый параметр является одной из основных характеристик трансформаторных устройств. Его показатели должны быть минимальными во избежание чрезмерных ограничений токов КЗ. Проводимые испытания устанавливают их соответствие нормам и требованиям, определяемым ПУЭ. Одновременно проверяется состояние изоляции проводов.

В трансформаторах с двумя обмотками напряжением, КЗ является величина, приведенная к заданной температуре и номинальной частоте, подводимая к одной из обмоток, в то время как другая замыкается накоротко. После этого номинальный ток устанавливается в каждой обмотке, а переключатель занимает положение, обеспечивающее подачу номинального напряжения.

Используя напряжение КЗ, можно установить падение напряжения, внешние характеристики и токи короткого замыкания преобразователя. Эти данные учитываются при дальнейшем включении трансформатора в параллельную работу. Напряжение короткого замыкания включает в себя активную и реактивную составляющие.

Величина активной составляющей определяется в процентах и вычисляется по следующей формуле: Ua = (Pоб1 + Pоб2)/10Sн = Роб/10Sн, в которой Роб – общие потери в трансформаторных обмотках, Sн – номинальная мощность устройства (кВА).

Значение реактивной составляющей определяется по собственной формуле, в которой все переменные величины определяются заранее: Хк = √Zk2 – Rk2. В ней Zk2 и Rk2 являются общим и активным сопротивлением вторичной обмотки.

Расчет токов короткого замыкания

2015-03-07 27862 Расчет токов короткого замыкания (КЗ) необходим для выбора аппаратуры и проверки элементов электроустановок (шин, изоляторов, кабелей и т. д.) на электродинамическую и термическую устойчивость, а также уставок срабатывания защит и проверки их на чувствительность срабатывания. Расчетным видом КЗ для выбора или проверки параметров электрооборудования обычно считают трехфазное КЗ. Однако для выбора и проверки уставок релейной защиты и автоматики требуется определение и несимметричных токов КЗ.

Расчет токов КЗ с учетом действительных характеристик и действительных режимов работы всех элементов системы электроснабжения сложен.

Поэтому для решения большинства практических задач вводят допущения, которые не дают существенных погрешностей:

— трехфазная сеть принимается симметричной;

— не учитываются токи нагрузки;

— не учитываются емкости, а следовательно, и емкостные токи в воздушной и кабельной сетях;

— не учитывается насыщение магнитных систем, что позволяет считать постоянными и не зависящими от тока индуктивные сопротивления всех элементов короткозамкнутой цепи;

— не учитываются токи намагничивания трансформаторов.

В зависимости от назначения расчета токов КЗ выбирают расчетную схему сети, определяют вид КЗ, местоположение точек КЗ на схеме и сопротивления элементов схемы замещения. Расчет токов КЗ в сетях напряжением до 1000 В и выше имеет ряд особенностей, которые рассматриваются ниже.

При определении токов КЗ используют, как правило, один из двух методов:

— метод именованных единиц – в этом случае параметры схемы выражают в именованных единицах (омах, амперах, вольтах и т. д.);

— метод относительных единиц – в этом случае параметры схемы выражают в долях или процентах от величины, принятой в качестве основной (базисной).

Метод именованных единиц применяют при расчетах токов КЗ сравнительно простых электрических схем с небольшим числом ступеней трансформации.

Метод относительных единиц используют при расчете токов КЗ в сложных электрических сетях с несколькими ступенями трансформации, присоединенных к районным энергосистемам.

Если расчет выполняют в именованных единицах, то для определения токов КЗ необходимо привести все электрические величины к напряжению ступени, на которой имеет место КЗ.

При расчете в относительных единицах все величины сравнивают с базисными, в качестве которых принимают базисную мощность одного трансформатора ГПП или условную единицу мощности, например 100 или 1000 МВА.

В качестве базисного напряжения принимают среднее напряжение той ступени, на которой произошло КЗ (Uср = 6,3; 10,5; 21; 37; 115; 230 кВ). Сопротивления элементов системы электроснабжения приводят к базисным условиям в соответствии с табл. 3.1.

Средние удельные значения индуктивных сопротивлений воздушных и кабельных линий электропередачи

Линия электропередачиxуд, Ом/км
Одноцепная воздушная линия, кВ:
6−2200,4
220−330 (при расщеплении на два провода в фазе)0,325
400−500 (при расщеплении на три провода в фазе)0,307
750 (при расщеплении на четыре провода в фазе)0,28
Трехжильный кабель, кВ:
6−100,08
0,12
Одножильный маслонаполненный кабель 110−220 кВ0,16

Расчет токов КЗ начинают с составления расчетной схемы электроустановки. На расчетной схеме указываются все параметры, влияющие на величину тока КЗ (мощности источников питания, средне номинальные значения ступеней напряжения, паспортные данные электрооборудования), и расчетные точки, в которых необходимо определить токи КЗ. Как правило, это сборные шины ГПП, РУ, РП или начало питающих линий. Точки КЗ нумеруют в порядке их рассмотрения начиная с высших ступеней.

Как избежать КЗ?

Понятно, что полностью избежать этого неприятного явления невозможно – тут велик элемент случайности. Однако, в наших силах существенно снизить риск возникновения КЗ. И тут колоссальное значение приобретает регулярный осмотр и техническое обслуживание электросетей.

Примеры превентивных мер:

  • чистка токоведущих частей, контактов и изоляторов от пыли и грязи,
  • проверка защиты от влажности,
  • проверка целостности укладки и монтажа,
  • ограждение и дополнительная защита опасных участков,
  • вывешивание и наклеивание предупреждающих табличек и надписей,
  • проверка и протяжка контактов,
  • обрезка деревьев и устранение других опасных факторов.

Как думаете, какие нужны превентивные меры защиты от КЗ на фото ниже?

Водосточная труба, электрощиты и гофра, уходящая под плитку. Инсталляция в старой части Батуми

В серьезных организациях регулярно проводят проверку кабелей и контактов тепловизором, а также измерение сопротивления изоляции и испытания изоляции высоковольтным напряжением.

Чем определяется напряжение и ток при коротком замыкании?

Подписывайтесь! Там тоже интересно!

Выше я сказал, что КЗ может произойти в любой точке линии. Давайте разбираться, как будет зависеть ток и напряжение в зависимости от места КЗ.

Немецкий физик Ом со школьных лет учит нас, что напряжение и ток определяются через сопротивление цепи:

Ток короткого замыкания, как и любой ток, тоже рассчитывается по закону Ома и зависит от напряжения и сопротивления на данном участке цепи. Поскольку сопротивление проводов в реальной жизни – это не только то, что показывает мультиметр, но и индуктивная составляющая, закон Ома для тока КЗ запишем в более общем виде:

В числителе U – номинальное напряжение в сети (напряжение холостого хода на выходе трансформатора на ТП). Число, которое получается при расчетах в знаменателе – полное сопротивление цепи Z, от которого и зависит ток КЗ. Рассмотрим схему однофазного питания квартиры и реальный случай КЗ с замкнувшим феном:

Замыкание в конце питающей линии (ток КЗ минимальный)

В схеме обозначены полные сопротивления различных участков питающей сети:

  • Z1 – внутреннее сопротивление трансформатора на подстанции с учетом пересчитанного сопротивления высоковольтной части,
  • Z2 – кабельная линия от ТП к распределительному пункту (РП) многоквартирного дома,
  • Z3 – кабельная линия от РП до квартирного щитка,
  • Z4 – кабель от щитка до розетки в одной из комнат,
  • Z5 – переноска от розетки до замкнувшего фена.

Фен сгорел и устроил короткое замыкание

Вот как может выглядеть график уровня напряжения на разных участках – от клемм трансформатора на подстанции до замкнувшей вилки фена:

Понижение напряжения до нуля в результате КЗ в конце линии

Падение напряжения сопровождается выделением тепла на всех участках питающей линии. На мощных участках с большим сечением проводов доля “квартирного” тока КЗ ничтожна, поэтому там падение небольшое (участки с сопротивлением Z1, Z2).

В связи с понижением напряжения в результате КЗ можно отметить, что это будет заметно на параллельных нагрузках, подключенных например к тому же РП. При КЗ или сильной перегрузке у одного из потребителей лампочки в соседних домах и подъездах станут гореть тусклее. Бывало?

А вот как может выглядеть изменение тока КЗ от источника до места замыкания:

Уменьшение тока при удалении от источника электроэнергии

Трансформатор на подстанции 10000/0,4 кВ мощностью 1000 кВА с глухозаземленной нейтралью вторичной обмотки. Примерно от таких питаются наши “районы, кварталы, жилые массивы”.

Причина возникновения и где это чаще всего происходит

Короткие межфазные замыкания, могут возникать в разных связках электрических установок:

  • Если попадет вода или же случится поломка в изолирующем уплотнителе либо части каркаса, то явление произойдет в потребителе;
  •  Если же произойдет пробивание замкнутости обмотки мотора на каркас. Другими словами, это «сгорание двигателя», но так как самостоятельно этого произойти не может, то данное явление можно объяснить одним. Показатели электричества, которое протекает через обмотку, превышаются, что в последствии вызывает межфазные замыкания. Тогда КЗ происходит в электрическом движке;
  • Точно так же, как и в предыдущем пункте, происходит межфазное короткое замыкание в обивке преобразователя;
  • Также может произойти КЗ во вводно-распределительном устройстве, а точнее в его конкретных деталях;
  •  Помимо этого, межфазные короткие замыкания могут произойти на высоковольтных связях.

На сегодняшний день есть много разных вариантов почему происходят межфазные КЗ. Выделяют такие самые частые причины: засорение, проникновение стальных элементов, пыли, которая проводит ток.

Именно он в случаи контакта человека со шкафчиком приведёт к несчастью с током.

Мы предлагаем разобрать виды и положения межфазного замыкания короткого , так как от него зависит напряжение электричества.

  • Стальное замыкание происходит, если соединить две части разных периодов с помощью стального объекта (детали сломанных стальных установок, стальные приборы, которые уронили во время производства кабеля). В такой момент стальные части будут приставать к резине и как результат дуга не образуется. Напряжение достаточно большое, но его ограничивает противодействие электропровода, обивка преобразователя и детали, которые перемыкают их.
  • Дуговое разъединение произойдёт в случаи наличия воздуха между частями с током. Такое может случиться во время неаккуратного замера перенапряжения высоковольтным индексом либо во время короткого переключения междуфазового промежутка.
  • Тлеющее происходит в проводных связях, возможно из-за грязной катушки. Ток, который идёт нагревает промежуток, где есть межфазное короткое замыкание, впоследствии чего может быть два результата. Первый это то, что межфазное внезапное короткое замыкание пройдёт само, а второй –только усилится, тогда последствия будут как в предыдущем виде.
  • При наличии пробивания полупроводящих деталей, к примеру диодного мостика. Во время стального межфазного замыкания тока короткого  будет выше, чем во время такого.

Для того чтобы сократить электричество межфазного короткого замыкания можно использовать реактор – электроаппарат, который ограничит ток короткого замыкания и будет поддерживать достаточное напряжение.

Она представляет собой соленоид, который благодаря сильному противодействию выполнит свою работу. Достаточно важными есть свойства кабеля: чем он длиннее и чем меньше его разрез, тем более маленьким будет электричество короткого разъединения.

Принцип действия

Внутреннее сопротивление – формула

Из представленной выше формулы понятно, что ток проходит по пути наименьшего электрического сопротивления. Этот процесс можно наблюдать, если разрушить изоляционные оболочки и соединить провода (уменьшить расстояние до критически малого уровня). Электрический пробой создает локальный нагрев. При значительном энергетическом потенциале такое воздействие провоцирует пожар, разрушает кабель.

На этом этапе рассуждений надо вспомнить следующую формулу:

P = I * U.

По мощности определяют потребление энергии нагрузкой. Увеличение этого параметра повышает вероятность повреждения силовых линий.

Высокий ток КЗ – это хорошо или плохо?

Как я показал на графике ранее, чем дальше место замыкания от источника питания, тем меньше будет ток короткого замыкания, поскольку сопротивление линии будет больше. Высокий ток КЗ обычно бывает в тех местах электросети, которые расположены наиболее близко к подстанции, а кабельные линии имеют большое сечение проводов.

В питающих сетях с напряжением 0,4 кВ относительно высокими считаются токи КЗ более 6кА, а токи КЗ выше 15 кА практически не встречаются. Итак, что мы имеем:

Минусы низкого тока КЗ

  • большое падение напряжения при достаточно мощной нагрузке;
  • как правило, низкое напряжение на электроприборах. При этом стабилизатор поможет не всегда;
  • нестабильность напряжения на электроприборах в зависимости от времени суток или времени года. По нормам на напряжение и его допуски я провёл расследование;
  • высокое (вплоть до бесконечности) время срабатывания автоматических выключателей при КЗ на землю (работает только тепловой расцепитель);
  • необходимость установки автоматических выключателей с характеристикой отключения “В” с целью более вероятного срабатывания электромагнитного расцепителя при КЗ. Этот спорный вопрос обсуждается в моей статье на Дзене Зачем ставить автоматы с характеристикой “В”;
  • обязательная установка УЗО – при этом, кроме своих “основных” обязанностей (отключение питания при высоком токе утечки, а также для защиты человека при прямом и косвенном прикосновении), УЗО выполняет функцию защиты от КЗ на землю (ПУЭ 1.7.59, 7.1.72).

Плюсы низкого тока КЗ

  • можно устанавливать дешевые автоматические выключатели с низкой номинальной наибольшей отключающей способностью (Icn = 4500 А);
  • сравнительно легко можно обеспечить селективность между вводным и нижестоящим автоматами. Но нужен расчет и измерение точного значения тока КЗ,
  • низкий пусковой ток электродвигателей и другой инерционной нагрузки. Статья Что такое пусковой ток, как его измерить и посчитать.

Минусы высокого тока КЗ

  • невозможность обеспечить селективность между вышестоящими и нижестоящими автоматами. Выход – установка рубильника либо селективного по времени автоматического выключателя;
  • необходимость установки АВ с высокой номинальной наибольшей отключающей способностью (Icn = 6000, 10000 А и т.д.). Отключающая способность должна быть выше, чем ток КЗ в начале защищаемого участка (ПУЭ п. 3.1.3);
  • большие негативные последствия при возникновении КЗ.

Плюсы высокого тока КЗ

  • легко гарантировать стабильное напряжение на нагрузке и вообще качество электроэнергии;
  • имеется перспектива подключения новых потребителей и увеличения нагрузки;
  • гарантированное отключение линии при КЗ.

Резюмируя плюсы и минусы, можно сказать, что значение тока КЗ – палка о двух концах. В бытовом секторе ток КЗ часто бывает низким, и его стараются увеличить, прокладывая новые линии с высоким сечением проводов и устанавливая новые трансформаторные подстанции. В серьезной энергетике наоборот, применяют методы по уменьшению тока КЗ.

Обращение к базе данных (edt.exe)

Файл edt.exe находится в подкатологе RU04EXP. Установить курсор на этом файле и нажать на ввод (ENTER), на экране появится заставка программы, ещё раз нажать на ввод. На экране появилось чистое поле для заполнения данными. Для того, чтобы появились данные необходимо выйти в верхнее меню по клавише F10.

Установить курсор на слове ФОРМАТ и нажать на ввод. Картинка на экране поменяется, в правом углу экрана будет меню, где надо выделить курсором фразу “Выбрать форму таблицы” и нажать на ввод. Выделите курсором данные которые Вы хотели бы изменить или посмотреть и нажмите на ввод, а затем на ESC.

Теперь таблица подготовлена для просмотра Ваших параметров. Для просмотра надо выйти опять по F10 в верхнее меню и выделить курсором ЧТЕНИЕ, нажать на ввод, а затем из меню конкретных параметров выделить интересующую Вас марку кабеля, тип автомата и т.д. и нажать на ввод.

Таблица заполнится параметрами. Для корректировки таблицы Вы пользуетесь клавишами:

  • F4 — редактировать
  • F7 — удалить строку
  • F8 — вставить строку

После корректировки данных необходимо выйти опять в верхнее меню и установив курсор на слове ЗАПИСЬ нажать на ввод. Теперь при работе с программой по расчетам токов КЗ программа будет обращаться к откорректированной Вами базе данных.

Замыкание и перегрузка

Чем отличаются эти два явления – короткое замыкание и перегрузка?

В электрической цепи можно выделить 4 принципиально разных режима, которые отличаются по току потребления:

  1. Режим холостого хода. Ток равен нулю, напряжение номинальное, потерь на проводах никаких нет. Розетка, к которой ничего не подключено, работает как источник напряжения в режиме холостого хода.
  2. Номинальный режим. Иначе – нормальный режим, когда мощность нагрузки не превышает расчетную. В этом режиме всё хорошо, мы спокойно наслаждаемся благом электрификации страны. “Просадка” напряжения если и будет, то незначительная – единицы процента.
  3. Режим перегрузки. В этом режиме ток может незначительно (на десятки процентов) либо в несколько раз (на сотни процентов) превышать номинальный. Перегрузка может произойти из-за частичного ухудшения изоляции, превышения суммарной мощности подключенных потребителей, либо из-за неисправности внутри отдельного электроприбора (например, межвитковое замыкание либо заклинивание электродвигателя, или замыкание внутри ТЭНа).
  4. Режим короткого замыкания. Это самый тяжелый, разрушительный режим с большим выделением тепла. Ток в месте замыкания – максимально возможный для данных условий. Другие побочные эффекты КЗ – понижение напряжения у других потребителей (как из-за пониженного напряжения сгорели новые немецкие холодильники на областном складе “Магнита”) и асимметрия фаз (к чему приводит асимметрия (перекос) фаз и как от этого защититься).

То есть, перегрузка от короткого замыкания отличается величиной сверхтока. При КЗ ток становится максимально возможным в данной точке цепи, а при перегрузке значение тока больше номинального, но меньше тока КЗ.

Из-за перегрузки может легко возникнуть КЗ – провода греются, изоляция плавится, и так далее, со всеми вытекающими, стреляющимися и взрывающимися последствиями.

Не стоит путать перегрузку, короткое замыкание и искрение (дуговой пробой). Если первые два понятия отличаются значением сверхтока, то при последовательном дуговом пробое (например, ослабла затяжка клеммы в розетке) действующее значение тока может быть совсем незначительным (единицы ампер), что не вызовет срабатывания ни автоматического выключателя, ни УЗО. Спасти ситуацию от пожара сможет лишь Устройство защиты от искрения (от дугового пробоя), которое ещё встречается сравнительно редко.

Понятие «короткое замыкание»

Короткое замыкание – это соединение двух точек электрической цепи с различными потенциалами, что не предусмотрено нормальным режимом работы цепи и приводит к критичному росту силы тока в месте соединения.

Таким образом, КЗ приводит к образованию разрушительных токов, превышающих допустимые величины. Что способствует выходу приборов из строя и повреждениям проводки. Для того, чтобы понять, что может спровоцировать этот процесс, нужно детально разобраться в процессах, происходящих при коротком замыкании.

По закону Ома сила тока (I) обратно пропорциональна сопротивлению (R)

Пример применения закона Ома к лампе накаливания мощностью в 100 Вт, подключенную к электросети в 220В. Здесь можно с помощью закона Ома рассчитать величину тока для нормального режима работы и короткого замыкания. Сопротивление источника и электропроводки проигнорируем.

Электрическая схема нормального режима работы (a) и короткого замыкания (b)

Вот пример нормальной цепи, по которой ток течет от источника к лампе накаливания. На схеме ниже изображен этот процесс.

Пример нормальной цепи, ток течет от источника к лампе

А теперь, представим, что произошла поломка, из-за которой в цепь попал дополнительный проводник.

Дополнительный проводник замыкает цепь

Сопротивление проводников стремится к нулю. Вот почему большая часть электрического тока после замыкания сразу потечет через дополнительный проводник, как бы избегая лампы накаливания с высоким сопротивлением. Результатом будет некорректная работа прибора, потому, что он не получит достаточно тока. И это еще не самый опасный вариант.

Как известно, по закону Ома сила тока обратно пропорциональна сопротивлению. Когда давление в цепи падает в результате короткого замыкания — на несколько порядков возрастет сила тока. По закону Джоуля – Ленца при росте силы тока увеличивается выделение тепла.

При многократном росте силы тока проводники мгновенно нагреваются. А теперь представим, что в сети нет предохранителей либо они не сработали достаточно быстро. В результате проводники плавятся, а изоляция начинает гореть. Зачастую, так возникают пожары в результате короткого замыкания.

Виды коротких замыканий

Схемы кз

Короткие замыкания в быту:

  • однофазные – происходит, когда фазный провод замыкается на ноль. Такие КЗ случаются чаще всего. Обозначен, как однофазное с землей К(1)
  • двухфазные – ( К2)происходит, когда одна фаза замыкается на другую, относится к несимметричным процессам. Есть еще 2-х фазное с землей К (1,1)в системах с заземленной нейтралью;
  • трехфазные – происходит, когда замыкаются сразу три фазы. Самый опасный вид КЗ. Это единственный вид короткого замыкания, при котором не происходит перекос фаз, процесс протекает симметрично;

Вот типичная картина последствий короткого замыкания: оплавленная или сгоревшая изоляция, запах гари, следы оплавления или горения внутри электрического прибора.

Последствия короткого замыкания в электрощите многоэтажного дома

В реальных условиях короткое замыкание происходит в таких ситуациях:

  • Повреждение изоляции проводников. Это может произойти из-за изношенности изоляции, а так же механического воздействия на неё. Жилы кабеля замыкаются напрямую или через корпус оборудования.
  • Некорректное подключение электроприборов к сети. Данный случай характеризуется допущением ошибки мастера или владельца квартиры из-за чего и происходит короткое замыкание.
  • Попадание в электрический прибор воды. Конечно же нельзя допускать попадание воды на электроприборы, ведь она является хорошим проводником электричества и замыкает контакты.

В обустройстве быта короткое замыкание происходит во время ремонта стен, если случайно повредить проводку. Также аварии случаются в квартирах и домах со старой проводкой. В результате чрезмерного нагревания она повреждается в следствие воздействия воды или грызунов.

по Iкз / Расчет токов КЗ

5.РАСЧЕТ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ

5.1.Расчет токов короткого замыкания в электроустановках напряжением выше 1000 В

Для систем электроснабжения промышленных предприятий типичным случаем является питание от источника неограниченной мощности. В этом случае можно считать, что в точке КЗ амплитуда периодической составляющей тока КЗ во времени не изменяется, а следовательно, остается также неизменным в течение всего процесса КЗ и ее действующее значение Iпо = Iпt = I∞ .

Это равенство также справедливо при КЗ в удаленных точках сети, когда результирующее сопротивление, приведенноек номинальной мощности источников питания больше 3,0 , то есть когда нельзя пользоваться расчетными кривыми.

Рассмотрим расчет токов КЗ при питании предприятия от системы бесконечной мощности. Обычно мощность питающей системы и ее сопротивление неизвестны, а в качестве исходных данных принимают одно из условий:

если мощность системы не ограничена (Sс = ∞), точка КЗ значительно удалена от источника питания, то сопротивление системы до точки присоединения потребителей принимают равным нулю;

если известны значения сверхпереходного I˝ и установившегося I∞ токов КЗ на шинах подстанции, питающей предприятие, то сопротивление системы до точки КЗ определяют по значениям этих токов;

если известны типы выключателей, установленных на подстанции, питающей предприятие, то принимают значение сверхпереходного тока на шинах подстанции равным току отключения выключателя, и по этому току определяют сопротивление системы от шин подстанции до источника неограниченной мощности.

Сопротивление системы xc в относительных единицах при заданных токах I» и I∞ определяют в зависимости от параметра β′′= I′′/ I∞ по расчетным

кривым, приведенным на рис. 5.3. Значения xc > 1 следует принимать при β′′ < 1 только для удаленных от энергосистемы точек, например для кабельных и воздушных сетей напряжением 6 −10 кВ, удаленных от источника питания несколькими трансформациями.

Если известны технические данные выключателя, установленного на подстанции, питающей предприятие, то сопротивление между источником неограниченной мощности и подстанцией, на которой установлен выключатель, определяют по номинальному току отключения выключателя Iном.откл или по мощности отключения выключателя Sном.откл

Для выбора и проверки электрооборудования по условиям электродинамической стойкости необходимо знать ударный ток, который определяют по формуле

iуд = 2 Iпо Kуд, (5.5)

где Iпо – значение периодической составляющей в начальный момент времени; Kуд – ударный коэффициент, зависящий от постоянной времени Та = хн /(314rн); xк и rк – соответственно индуктивное и активное сопротив-

ления цепи КЗ; значения Kуд приведены в табл. 5.3 . При вычислении токов

 Электроснабжение. Учеб. пособие к практ. занятиям -72-
Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий