Подключение светодиода к 220В

Последовательное подключение

При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.

Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).

Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:

Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ — конечно, последовательным!

Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.

Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.

Вот пример готового устройства:

Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64…106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток — это от него уже не зависит.

Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.

Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:

Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) — либо через токоограничительный резистор, либо через токозадающий драйвер.

Расчет резистора для светодиода

Надежная работа светодиода зависит от тока, протекающего через него. При заниженных значениях, он просто не будет светить, а при превышении значения тока – характеристики элемента ухудшатся, вплоть до его разрушения. При этом говорят – светодиод сгорел. Для того чтобы исключить возможность выхода из строя этого полупроводника необходимо подобрать в цепь с включенным в нее, резистором. Он будет ограничивать ток в цепи на оптимальных значениях.

Вычисление номинала сопротивления

Для работы радиоэлемента на него нужно подать питание. По закону Ома, чем больше сопротивление отрезка цепи, тем меньший ток по нему протекает. Опасная ситуация возникает, если в схеме течет больший ток, чем положено, так как каждый элемент не выдерживает большей токовой нагрузки.

Сопротивление светодиода является нелинейным. Это значит, что при изменении напряжения, подаваемого на этот элемент, ток, протекающий через него, будет меняться нелинейно. Убедиться в этом можно, если найти вольт — амперную характеристику любого диода, в том числе и светоизлучающего. При подаче питания ниже напряжения открытия p – n перехода, ток через светодиод низкий, и элемент не работает. Как только этот порог превышен, ток через элемент стремительно возрастает, и он начинает светиться.

Если источник питания соединять непосредственно со светодиодом, диод выйдет из строя, так как не рассчитан на такую нагрузку

Чтобы этого не произошло – нужно ограничить ток, протекающий через светодиод балластным сопротивлением, или произвести понижение напряжения на важном для нас полупроводнике

Рассмотрим простейшую схему подключения (рисунок 1). Источник питания постоянного тока подключается последовательно через резистор к нужному светодиоду, характеристики которого нужно обязательно узнать. Сделать это можно в интернете, скачав описание (информационный лист) на конкретную модель, или найдя нужную модель в справочниках. Если найти описание не представляется возможным, можно приблизительно определить падение напряжения на светодиоде по его цвету:

  • Инфракрасный — до 1.9 В.
  • Красный – от 1.6 до 2.03 В.
  • Оранжевый – от 2.03 до 2.1 В.
  • Желтый – от 2.1 до 2.2 В.
  • Зеленый – от 2.2 до 3.5 В.
  • Синий – от 2.5 до 3.7 В.
  • Фиолетовый – 2.8 до 4 В.
  • Ультрафиолетовый – от 3.1 до 4.4 В.
  • Белый – от 3 до 3.7 В.

Рисунок 1 – схема подключения светодиода

Ток в схеме можно сравнить с движением жидкости по трубе. Если есть только один путь протекания, то сила тока (скорость течения) во всей цепи будет одинакова. Именно так происходит в схеме на рисунке 1. Согласно закону Кирхгоффа, сумма падений напряжения на всех элементах, включенных в цепь протекания одного тока, равно ЭДС этой цепи (на рисунке 1 обозначено буквой Е). Отсюда можно сделать вывод, что напряжение, падающее на токоограничивающем резисторе должно быть равным разности напряжения питания и падения его на светодиоде.

Так как ток в цепи должен быть одинаковым, то и через резистор, и через светодиод ток получается одним и тем же. Для стабильной работы полупроводникового элемента, увеличения его показателей надежности и долговечности, ток через него должен быть определенных значений, указанных в его описании. Если описание найти невозможно, можно принять приблизительное значение тока в цепи 10 миллиампер. После определения этих данных уже можно вычислить номинал сопротивления резистора для светодиода. Он определяется по закону Ома. Сопротивление резистора равно отношению падения напряжения на нем к току в цепи. Или в символьной форме:

R = U (R)/ I,

где, U (R) — падение напряжения на резисторе

I – ток в цепи

Расчет U (R) на резисторе:

U (R) = E – U (Led )

где, U (Led) — падение напряжения на светодиодном элементе.

С помощью этих формул получится точное значение сопротивления резистора. Однако, промышленностью выпускаются только стандартные значения сопротивлений так называемые ряды номиналов. Поэтому после расчета придется сделать подбор существующего номинала сопротивления. Подобрать нужно чуть больший резистор, чем получилось в расчете, таким образом, получится защита от случайного превышения напряжения в сети. Если подобрать близкий по значению элемент сложно, можно попробовать соединить два резистора последовательно, или параллельно.

Подбор мощности резистора

Если подобрать сопротивление меньшей мощности, чем нужно в схеме, оно просто выйдет из строя. Расчет мощности резистора довольно прост, нужно падение напряжения на нём умножить на ток, протекающий в этой цепи. После чего нужно выбрать сопротивление с мощностью, не меньшей рассчитанной.

Напряжение питания светодиодов

Несмотря на то что электрический параметр №1 для светодиода – это номинальный ток, часто для расчётов необходимо знать напряжение на его выводах. Под понятием «напряжение светодиода» понимают разницу потенциалов на p-n-переходе в открытом состоянии.

Оно является справочным параметром и вместе с другими характеристиками указывается в паспорте к полупроводниковому прибору. 3, 9 или 12 вольт… Часто в руки попадают экземпляры, о которых ничего не известно. Так как узнать падение напряжения на светодиоде?

Теоретический метод

Прекрасной подсказкой в этом случае является цвет свечения, внешняя форма и размеры полупроводникового прибора. Если корпус светодиода выполнен из прозрачного компаунда, то цвет его остаётся загадкой, разгадать которую поможет мультиметр.

Для этого переключатель цифрового тестера переводят в положение «проверка на обрыв» и щупами поочерёдно касаются выводов светодиода. У исправного элемента в прямом смещении будет наблюдаться небольшое свечение кристалла. Таким образом, можно сделать вывод не только о цвете свечения, но и о работоспособности полупроводникового прибора.

Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. Именно химический состав полупроводника во многом определяет напряжение питания светодиодов, точнее, падение напряжение на p-n-переходе.

В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Однако есть определённый диапазон значений, которых зачастую достаточно для проведения предварительных расчетов элементов электронной цепи.

С одной стороны, размер и внешний вид корпуса не влияют на прямое напряжение светодиода. Но, с другой стороны. через линзу можно увидеть количество излучающих кристаллов, которые могут быть соединены последовательно. Слой люминофора в SMD светодиодах может скрывать целую цепочку из кристаллов.

Ярким примером является миниатюрные многокристальные светодиоды от компании Cree, падение напряжения на которых зачастую значительно превышает 3 вольта. В последние годы появились белые SMD светодиоды, в корпусе которых размещено 3 последовательно соединённых кристалла. Их часто можно встретить в китайских светодиодных лампах на 220 вольт.

Естественно убедиться в исправности LED-кристаллов в такой лампе при помощи мультиметра не удастся. Стандартная батарейка тестера выдаёт 9 В, а минимальное напряжение срабатывания трёхкристального белого светоизлучающего диода – 9,6 В. Также встречаются двухкристальная модификация с порогом срабатывания от 6 вольт.

Практический метод

Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке.

Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет.

В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать. Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору. Текущие показания на экране и будут номинальным прямым напряжением светодиода.

Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.

Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.

В отсутствии регулируемого блока питания можно запитать светодиод «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.

Немного теории

Для нормальной работы светодиода требуется постоянное напряжение или ток. Они должны быть:

  1. Постоянными по направлению. Т. е. ток в цепи светодиода при приложении напряжения должен течь от «+» источника напряжения к его «–».
  2. Стабильными, т. е. постоянными по величине, в течение времени работы диода.
  3. Не пульсирующими – после выпрямления и стабилизации величины постоянных напряжения или тока не должны периодически изменяться.

    Схема формы напряжения на выходе двухполупериодного выпрямителя при фильтрации электролитическим конденсатором (на схеме черный и белый прямоугольники с маркировкой «+»). Пунктир – напряжение на выходе выпрямителя. Конденсатор заряжается до амплитуды полуволны и постепенно разряжается на сопротивлении нагрузки. «Ступеньки» – это пульсации. Отношение амплитуд ступеньки и полуволны в процентах – это коэффициент пульсации.

Для светодиодов вначале использовали имевшиеся источники напряжения – 5, 9, 12 В. А рабочее напряжение p-n перехода от 1,9-2,4 до 3,7-4,4 В. Поэтому включение диода напрямую – это почти всегда его физическое сгорание от перегрева большим током. Ток нужно ограничивать токоограничивающим резистором, тратя энергию на его нагрев.

Светодиоды можно включать последовательно по несколько штук. Тогда, собрав из них цепочку, можно по сумме их прямых напряжений дойти почти до напряжения источника питания. А оставшуюся разницу «погасить», рассеяв ее в виде тепла на резисторе.

А нужно ли менять люминесцентные лампочки на LED-лампы?

На сегодняшний день можно уверенно сказать, что LED-лампочки любого форм-фактора практически по всем показателям превосходят люминесцентные аналоги. Причём светодиодные технологии продолжают прогрессировать, а значит, изделия на их основе будут ещё более совершенными в будущем. В подтверждение сказанного ниже приведена сравнительная характеристика двух видов трубчатых ламп.

Люминесцентные лампы Т8:

  • наработка на отказ составляет порядка 2000 ч. и зависит от количества включений, но не более 2000 циклов;
  • свет распространяется во все стороны, в связи с чем они нуждаются в отражателе;
  • постепенное увеличение яркости в момент включения;
  • пускорегулирующий аппарат (ПРА) служит источником сетевых помех;
  • деградация защитного слоя со снижением светового потока на 30%;
  • стеклянная колба и пары ртути внутри неё требуют бережного отношения и утилизации.

Светодиодные лампы Т8:

срок службы не менее 10 тыс. ч. и не зависит от частоты вкл./выкл.;
имеют направленный световой поток;
мгновенно включаются на полную яркость;
драйвер не оказывает влияния на электросеть;
потеря яркости не превышает 10% за 10 тыс. часов;
имеют значительно меньшую мощность электропотребления;
полностью экологически безопасны.

Кроме того, светодиодные лампы Т8 обладают вдвое большей светоотдачей при равном энергопотреблении, реже выходят из строя и имеют гарантию от производителя. Возможность размещения внутри колбы разного количества светодиодов позволяет добиться оптимального уровня освещённости. Это означает, что взамен люминесцентной лампы Т8-G13-600 мм на 18 Вт можно установить светодиодную лампу такой же длины на 9, 18 или 24 Вт.

Сокращение Т8 указывает на диаметр стеклянной трубки (8/8 дюйма или 2,54 см), а G13 – это тип цоколя, указывающий на расстояние между штырьками в мм.

Взвесив все «За» и «Против», можно сделать вывод, что переделка люминесцентного светильника под светодиодную лампочку полностью оправдана, как с технической, так и с экономической точки зрения.

Прежде чем перейти к модернизации светильника с заменой люминесцентных ламп Т8 на светодиодные, сначала нужно как следует разобраться со схемами. Все люминесцентные светильники подключаются по одному из двух вариантов:

на базе ПРА, в составе которого дроссель, стартер и конденсатор (рис.1);

Как подключить светодиодную ленту на 220 вольт

Нередко в быту вместо крупного прибора, который может выступать светильником, предпочитают установить подсветку. Для нее лучше всего использовать готовые светодиодные ленты. Монтаж очень прост, так как установщику нужно лишь следовать инструкции: все составляющие подсоединения при монтаже используют уже в готовом виде.

  1. Светодиодная лента – ряд последовательно закрепленных светодиодов. К блоку питания они присоединяются параллельно, друг к другу лучше монтировать платы тоже параллельно.
  2. Для начала определяют плюс и минус блок питания. Обычно красный шнур – это плюс, а синий или черный – минус. Если шнур отсутствует, подключение производят через маркированные зажимы.
  3. Лучше всего подсоединить ленту пайкой. В определенных случаях удобней использовать коннекторы. При монтаже требуется лишь отодвинуть зажимную пластину, насадить коннектор на край ленты и сдвинуть зажим назад. Затем провод от коннектора подсоединяют к блоку.

Если предполагается монтаж цветной ленты, схема будет включать контроллер, отвечающей за включение и отключение отдельных светодиодов.

Как питать несколько светодиодов

Предположим, есть 4 светодиода для подключения. Первый и самый простой вариант, – подключить каждый из них через отдельный резистор:

Независимое питание каждого светодиода

С точки зрения стабилизации рабочих параметров диодов это лучший подход: каждый из них запитан отдельно и не влияет на остальные. Проблемы с одним не повлияют на остальных. К сожалению, такой способ питания связан с большими потерями энергии. Вот пример питания 4-х красных светодиодов – каждый из них подключен через отдельный резистор 330 Ом. При таком подключении на каждый резистор подается напряжение, необходимое для правильного питания одного светодиода. С каждым последующим LED и его резистором потребление тока всей схемы соответственно увеличивается/

Подключение светодиодной ленты к сети 220В схема

Чтобы запитать светодиодную ленту от сети обычной бытовой сети переменного тока 220В 50Гц нужно выполнить три условия:

  • преобразовать переменное напряжение сети в постоянное;
  • выровнять уровни напряжений: снизить сетевое напряжение до 12В или изменить схему подключения светодиодов, чтобы на них можно было подавать высокое напряжение;
  • стабилизировать параметры электрического питания.

Проще всего использовать готовый блок питания для светодиодной ленты 12В, он рассчитан на безопасное напряжение. Но в применении этого блока питания есть и минусы: он стоит денег и собрать его не так просто, кроме того из-за низкого напряжения светодиодные ленты не стоит располагать далеко от блока питания, для компенсации потерь напряжения придется использовать толстые провода.

Второй вариант: переделать светодиодную ленту и вместо последовательно-параллельного включения светодиодов использовать последовательное.
При такой схеме включения светодиодная сборка питается малым током, но при большом напряжении. Кроме того, если пожертвовать гальванической развязкой, то схема драйвера питания сильно упрощается.

Внимание!!! Схемы без гальванической развязки от сети можно применять там, где нет опасности поражения электрическим током, например в сухом помещении на потолке

  • Самое интересное, что схему подобного драйвера можно сделать из деталей отслуживший свой срок энергосберегающей лампочки!
  • Рассмотрим подключение светодиодной ленты к сети 220В схема приведена на рисунке.

Таблица номиналов элементов схемы:

  • C1 – 2,2 мкФ 400 В
  • R1 – 1,3 кОм
  • R2 – 4,3 кОм
  • R3 – 47 Ом
  • VD1 .. VD4 – 1N4007
  • VT1, VT2 — 13002

На схеме можно выделить три узла:

  • выпрямитель переменного напряжения и фильтр на элементах C1, R1, VD1 – VD4;
  • стабилизатор тока на R2, R3, VT1, VT2;
  • сборка из светодиодов HL1 – HLN.

Про работу выпрямителя можно почитать здесь. В данной схеме кроме диодного моста из 4-х диодов добавлены токоограничивающий резистор R1 защищающий от бросков тока, фильтрующий конденсатор C1.

При подаче на вход данного выпрямителя сетевого напряжения 220В / 50Гц, на выходе выпрямителя (на конденсаторе С1) появиться постоянное напряжение равное примерно 300В с пульсацией частотой 100Гц.

Чем больше будет емкость конденсатора, тем меньше будет пульсация.

Светодиоды требуют питания стабилизированным током, часто их питают стабилизированным напряжением через резистор ограничивающий ток, например как в светодиодных лентах. Но зачем нам идти на компромиссы, если сделать стабилизатор тока, работающий при больших напряжениях проще, чем стабилизатор напряжения. Работа схемы стабилизатора тока рассматривалась тут.

Такой участок подключается параллельно куче других таких же участков и все это подключается к 12 В.

На каждом диоде падает напряжение от 3,3 В до 3,6 В, таким образом на токоограничивающий резистор остается около полутора Вольт.

Чтобы повысить напряжение участки из трех диодов включаем последовательно с друг другом, а резистора можно выпаять, закорачивать или заменять перемычками, т.е

как будет удобнее с точки зрения топологии.Внимание!!! Соблюдайте полярность, при ошибка в полярности подключения светодиода при таком напряжении будет для светодиода фатальной

Ток которые протекает через тройку светодиодов можно примерно посчитать, разделив полтора Вольта на сопротивление токоограничивающего резистора. То есть при сопротивлении 150 Ом, ток через светодиоды составит 10 мА.

Именно такая лента со светодиодами на 10 мА попалась мне, для неё и были рассчитывать параметры драйвера. Если нужно уменьшить ток, то придется пропорционально увеличивать значение сопротивления резистора R3.

При сетевом напряжении в 220 В, описанная схема способна обеспечить последовательное подключение до 25 групп из трех диодов или 75 единичных. Если напряжение в сети часто бывает пониженным, то лучше снизить количество групп светодиодов до 20 или даже 15.

А вот и плата от энергосберегающей лапочки, откуда можно получить нужные радиоэлементы.

Лампочка разбилась, а плата осталась в рабочем состоянии.

Кстати полярность подключения диодов, выводы транзисторов можно срисовать прямо с этой платы, все что нужно там помечено.
Добываем элементы из этой платы и собираем новую схему.

На фото видно, что транзисторы в маломощном корпусе TO-92 такой корпус не рассеет мощность больше 600 мВт. И суммарная мощность схема с таким транзистором не позволит отдавать в нагрузку более пары Ватт.

Если потребуется собрать схему для более мощной нагрузки, то транзистор VT2 должен быть в более мощном корпусе и желательно с радиатором.

Электроприборы работающие в диапазоне напряжений 100-110 вольт

Теперь рассмотрим другой вариант ситуации: купленный электроприбор рассчитан строго на напряжение 100-110 вольт. Это все крупные стационарные электроприборы, которые редко путешествуют между континентами. Кроме телевизоров со стиральными машинами сюда относятся небольшие, но мощные электроприборы: утюги, фены, плойки, электрочайники, тостеры, пылесосы.

Решить и эту проблему можно, но не так просто и дешево, как с адаптером. Вас выручит покупка специального прибора, т.н. понижающего трансформатора, который преобразовывает напряжение электросети 220 вольт, автоматически понижая его до необходимых прибору 110 вольт. После его покупки такого трансформатора никаких адаптеров покупать больше не надо, т.к. все необходимые разъемы уже есть на приборе.

Со стороны пользователя никаких настроек, кроме соединения вилок питания не требуется, просто придется каждый раз подключать имеющийся электроприбор к сети через данный трансформатор. Но момент, который необходимо обязательно учесть при покупке — это мощность вашего электроприбора.

Для мощных электроприборов нужен понижающий трансформатор большей мощности. Вам необходимо определить максимальную мощность вашего электроприбора, которая обычно указывается в Ваттах (ищите «W» или «Watt») и исходя из этой информации уже покупать понижающий трансформатор.

Габариты понижающих трансформаторов варьируют. Для электроприборов небольшой мощности – до 150-200 Ватт (принтер, ксерокс) он немного больше обычного блока питания, а для большей мощности, например 1000-3000 Ватт (фен, пылесос), его габариты могут достигать размеров двухлитрового пакета с соком.

Вот как выглядит стандартный понижающий трансформатор небольшой мощности

Обратите внимание, что на всех подобных приборах разъем под вилку американского стандарта уже присутствует. А вот понижающий трансформатор большей мощности, рассчитанный на целых два электроприбора. А вот понижающий трансформатор большей мощности, рассчитанный на целых два электроприбора

А вот понижающий трансформатор большей мощности, рассчитанный на целых два электроприбора.

Торговая марка «Штиль», Российская Федерация.

Обычно понижающие транформаторы найти в магазинах электротоваров непросто. Легче заказать через интернет, например с бесплатной доставкой, они есть в китайском Aliexpress или гипермаркете Amazon. Стоят от $20, для приборов мощностью до 200 Ватт. Чем мощнее подключаемый прибор, тем дороже трансформатор, например для приборов мощностью до 3000 Ватт он уже будет стоить от $100.

Также, как и в случае с адаптерами сильно экономить тут не стоит. Рискуете получить проблему.

И под конец ответы на несколько распространенных вопросов.

Нашел в США электроприборы рассчитанные на 220 вольт. Можно их покупать?

Да, такие товары и даже целые магазины встречаются. Конечно можете покупать. Обычно эти товары уже укомплектованы «евровилкой».

Если мощности понижающего трансформатора недостаточно?

В этом случае также стоит воздержаться от использования. Хорошо если есть встроенный предохранитель, который просто отключит электроприбор при нагревании. А если нет? Проверять не стоит.

Расчет подключения светодиодов в схемах на 12 и 220 вольт

Отдельный светодиод невозможно напрямую подключить к источнику питания на 12 В поскольку он сразу же сгорит. Необходимо использование ограничительного резистора, параметры которого рассчитываются по формуле: R= (Uпит-Uпад)/0,75I, в которой R является сопротивлением резистора, Uпит и Uпад – питающее и падающее напряжения, I – ток, проходящий по цепи, 0,75 – коэффициент надежности светодиода, являющийся постоянной величиной.

В качестве примера можно взять схему, используемую при подключение светодиодов на 12 вольт в авто к аккумулятору. Исходные данные будут выглядеть следующим образом:

  • Uпит = 12В – напряжение в автомобильном аккумуляторе;
  • Uпад = 2,2В – питающее напряжение светодиода;
  • I = 10 мА или 0,01А – ток отдельного светодиода.

В соответствии с формулой, приведенной выше, значение сопротивления будет следующим: R = (12 – 2,2)/0,75 х 0,01 = 1306 Ом или 1,306 кОм. Таким образом, ближе всего будет стандартная величина резистора в 1,3 кОм. Кроме того, потребуется расчет минимальной мощности резистора. Данные расчеты используются и при решении вопроса, как подключить мощный светодиод к 12 вольтам. Предварительно определяется величина фактического тока, которая может не совпадать со значением, указанным выше. Для этого используется еще одна формула: I = U / (Rрез.+ Rсвет), в которой Rсвет является сопротивлением светодиода и определяется как Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом. Следовательно, ток в цепи составит: I = 12 / (1300 + 220) = 0,007 А.

В результате, фактическое падение напряжения светодиода будет равно: Uпад.свет = Rсвет х I = 220 х 0,007 = 1,54 В. Окончательно значение мощности будет выглядеть так: P = (Uпит. — Uпад.)² / R = (12 -1,54)²/ 1300 = 0,0841 Вт). Для практического подключения значение мощности рекомендуется немного увеличить, например, до 0,125 Вт. Благодаря этим расчетам, удается легко подключить светодиод к аккумулятору 12 вольт. Таким образом, для правильного подключения одного светодиода к автомобильному аккумулятору на 12В, в цепи дополнительно понадобится резистор на 1,3 кОм, мощность которого составляет 0,125Вт, соединяющийся с любым контактом светодиода.

Расчет подключения светодиода к сети 220В осуществляется по такой же схеме, что и для 12В. В качестве примера берется такой же светодиод с током 10 мА и напряжением 2,2В. Поскольку в сети используется переменный ток напряжением 220В, расчет резистора будет выглядеть следующим образом: R = (Uпит.-Uпад.) / (I х 0,75). Вставив в формулу все необходимые данные, получаем реальное значение сопротивления: R = (220 — 2.2) / (0,01 х 0,75) = 29040 Ом или 29,040 кОм. Ближайший стандартный номинал резистора – 30 кОм.

Далее выполняется расчет мощности. Вначале определяется значение фактического тока потребления: I = U / (Rрез.+ Rсвет). Сопротивление светодиода рассчитывается по формуле: Rсвет = Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом. Следовательно, ток в электрической цепи будет составлять: I = 220 / (30000 + 220) = 0,007А. В результате, реальное падение напряжение на светодиоде будет следующим: Uпад.свет = Rсвет х I = 220 х 0,007 = 1,54В.
Для определения мощности резистора используется формула: P = (Uпит. — Uпад.)² / R = (220 -1,54)² / 30000 = 1,59Вт. Значение мощности следует увеличить до стандартного, составляющего 2Вт. Таким образом, чтобы подключить один светодиод к сети с напряжением 220В понадобится резистор на 30 кОм с мощностью 2Вт.

Однако в сети протекает переменный ток и горение лампочки будет происходить лишь в одной полуфазе. Светильник будет выдавать быстрый мигающий свет, с частотой 25 вспышек в секунду. Для человеческого глаза это совершенно незаметно и воспринимается как постоянное свечение. В такой ситуации возможны обратные пробои, которые могут привести к преждевременному выходу из строя источника света. Чтобы избежать этого, выполняется установка обратно направленного диода, обеспечивающего баланс во всей сети.

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий