Способы беспроводной передачи электричества
Схема магнитной индукции полей
Большинство теоретиков и практиков, изучающих работу электрического тока, предлагали свои методы передачи его на расстояние без использования проводников. В начале подобных исследований многие ученые пытались заимствовать практику из принципа работы радиоприемников, которые используются для передачи азбуки Морзе или коротковолнового радио. Но такие технологии не оправдали себя, так как рассеивание тока было слишком малым и не могло покрыть большие расстояния, к тому же транспортировка электричества по радиоволнам была возможна только при работе с малыми мощностями, не способными приводить в действие даже самый простейший механизм.
В результате экспериментов было выявлено, что для передачи электричества без провода наиболее приемлемы СВЧ волны, которые имеют более устойчивую конфигурацию и напряжение, а также при рассеивании теряют гораздо меньше энергии, чем любой другой метод.
Впервые успешно применить данный способ смог изобретатель и конструктор Вильям Браун, который смоделировал летающую платформу, состоящую из металлической площадки с двигателем, мощностью около 0,1 лошадиной силы. Платформа была выполнена в виде принимающей антенны с сеткой, улавливающей СВЧ волны, которые передавались специально сконструированным генератором. Через всего четырнадцать лет тот же конструктор представил летательный аппарат малой мощности, который принимал энергию от передатчика на расстоянии 1,6 километра, ток передавался сконцентрированным пучком по СВЧ волнам. К сожалению, широкого распространения данный труд не получил, так как на тот момент не существовало технологий, которые могли бы обеспечить транспортировку таким методом тока с высоким напряжением, хотя коэффициент полезного действия приемника и генератора был равен более 80%.
Энергия из космоса
В 1968 году американские ученые разработали проект, подкрепленный научным трудом, в котором предлагалось размещение больших солнечных батарей на околоземной орбите. Приемники энергии должны были быть направлены на солнце, а в их основании размещались накопители тока. После поглощения солнечной радиации и трансформации ее в СВЧ или магнитные волны через специальное устройство ток направлялся на землю. Прием должен был осуществляться специальной антенной большой площади, настроенной на определенную волну и преобразующей волны в постоянный или переменный ток. Такая система была высоко оценена во многих странах как перспективная альтернатива современным источникам электричества.
Беспроводная зарядка – как работает индукция
Беспроводная зарядка восполняет энергию в устройстве без необходимости подключать к нему кабель, работая на определенном расстоянии. Это происходит за счёт процесса, называемого электромагнитной индукцией.
Для тех, кто не любил открывать учебники физики, я добавил дозу теории.
Несколько слов о теории беспроводной зарядки
Говоря просто, и зарядное устройство, и оборудование, которое мы хотим заряжать, должны иметь индукционную катушку. Внутри базовой станции есть спиральный шнур. Это электромагнитная катушка, также известная как передающая катушка, через которую протекает переменный ток. Приёмная катушка находится под корпусом смартфона (или другого устройства, поддерживающего беспроводную зарядку). На определенном расстоянии их соединение создаёт единое электромагнитное поле, через которое происходит передача энергии. Таким образом, процесс полностью беспроводной.
Оборудование, которое передает энергию, то есть в нашем случае индукционное зарядное устройство, всегда должно быть подключено к источнику питания. Другими словами, оно должно сначала потреблять энергию, чтобы затем передать её, например, на смартфон.
Также нужно помнить о точном размещении смартфона на базовой станции. Чтобы катушки были как можно ближе друг к другу. В противном случае ток, протекающий к питаемому устройству, уменьшится. Поэтому стоит выбрать индукционное зарядное устройство, оснащенное управляющим диодом LED, который информирует о правильном позиционировании устройства на базе и начале процесса зарядки.
Что такое Qi
Qi – это основной унифицированный стандарт беспроводной зарядки, разработанный консорциумом Wireless Power Consortium. Вы встретите его в большинстве устройств, поддерживающих индуктивную зарядку. Он разработан для обеспечения совместимости с зарядным устройством для смартфона, даже если оба устройства принадлежат разным производителям.
Однако, для точности следует отметить, что на рынке есть и другие варианты, такие как PMA. Имейте в виду, что это не очень распространенные решения, и они с самого начала сильно отстают от ведущего стандарта Qi.
Хорошо, достаточно теории! Пора понять, как это выглядит на практике?
Технология
Принцип индуктивной связи
Два устройства, взаимно индуктивно-связанные или имеющие магнитную связь, выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода, производится посредством электромагнитной индукции. Это связано с взаимной индуктивностью. Индуктивная связь является предпочтительной из-за её способности работать без проводов, а также устойчивости к ударам.
Резонансная индуктивная связь является сочетанием индуктивной связи и резонанса. Используя понятие резонанса можно заставить два объекта работать зависимо от сигналов друг друга.
Концепция резонанса индуктивной связи
Как видно из схемы выше, резонанс обеспечивает индуктивность катушки. Конденсатор подключен параллельно к обмотке. Энергия будет перемещаться назад и вперед между магнитным полем, окружающим катушку и электрическим полем вокруг конденсатора. Здесь потери на излучение будет минимальными.
Существует также концепция беспроводной ионизированной связи.
Она тоже воплотима в жизнь, но здесь необходимо приложить немного больше усилий. Эта техника уже существует в природе, но вряд ли есть целесообразность ее реализации, поскольку она нуждается в высоком магнитном поле, от 2,11 М /м . Её разработал гениальный ученый Ричард Волрас, разработчик вихревого генератора, который посылает и передает энергию тепла на огромные расстояния, в частности при помощи специальных коллекторов. Самой простой пример такой связи – это молния.
Технология беспроводной передачи электроэнергии
Беспроводная передача электрической энергии (WPT) позволяет подавать питание через воздушный зазор без необходимости использования электрических проводов. Беспроводная передача электроэнергии может обеспечить питание от источника переменного тока для совместимых аккумуляторов или устройств без физических разъемов и проводов. Беспроводная передача электрической энергии может обеспечить заряд мобильных телефонов и планшетных компьютеров, беспилотных летательных аппаратов, автомобилей и прочего транспортного оборудования. Она может даже сделать возможной беспроводную передачу в космосе электроэнергии, полученной от солнечных панелей.
Беспроводная передача электрической энергии начала свое быстрое развитие в области бытовой электроники, заменяя проводные зарядные устройства. На выставке CES 2017 будет показано множество устройств, использующих беспроводную передачу электроэнергии.
Однако концепция передачи электрической энергии бес проводов возникла примерно в 1890-х годах. Никола Тесла в своей лаборатории в Колорадо Спрингс мог без проводов зажечь электрическую лампочку, используя электродинамическую индукцию (используемой в резонансном трансформаторе).
Изображение из патента Теслы на «устройство для передачи электрической энергии», 1907 год
Были зажжены три лампочки, размещенные на расстоянии 60 футов (18 метров) от источника питания, и демонстрация была задокументирована. У Теслы были большие планы, он надеялся, что его башня Ворденклиф, расположенная на Лонг-Айленд, будет без проводов передавать электрическую энергию через Атлантический океан. Этого никогда не произошло из-за различных проблем, в том числе, и с финансированием и сроками.
Беспроводная передача электрической энергии использует поля, создаваемые заряженными частицами, для переноса энергии через воздушный зазор между передатчиками и приемниками. Воздушный зазор закорачивается с помощью преобразования электрической энергии в форму, которая может передаваться по воздуху. Электрическая энергия преобразуется в переменное поле, передается по воздуху, и затем с помощью приемника преобразуется в пригодный для использования электрический ток. В зависимости от мощности и расстояния, электрическая энергия может эффективно передаваться через электрическое поле, магнитное поле или электромагнитные волны, такие как радиоволны, СВЧ излучение или даже свет.
В следующей таблице перечислены различные технологии беспроводной передачи электрической энергии, а также формы передачи энергии.
Технология | Переносчик электрической энергии | Что позволяет передавать электрическую энергию |
---|---|---|
Индуктивная связь | Магнитные поля | Витки провода |
Резонансная индуктивная связь | Магнитные поля | Колебательные контуры |
Емкостная связь | Электрические поля | Пары проводящих пластин |
Магнитодинамическая связь | Магнитные поля | Вращение постоянных магнитов |
СВЧ излучение | Волны СВЧ | Фазированные ряды параболических антенн |
Оптическое излучение | Видимый свет / инфракрасное излучение / ультрафиолетовое излучение | Лазеры, фотоэлементы |
ЛЭП
Тут стоит рассказать о том, какие сети используются для передачи электроэнергии. От электростанции до конечного потребителя электричество проходит не только через повышающий трансформатор и высоковольтные линии. Если посмотреть на современный город с высоты, можно заметить целый клубок проводов, образующий единую сеть.
Чтобы попасть к потребителю, с высоковольтных линий ток заново поступает в трансформатор, но на этот раз напряжение понижается. После чего он подается на распределительную сеть и расходится на промышленные предприятия, которые имеют свою подстанцию для получения нужного им напряжения, на городские подстанции, которые расформировывают электричество по магистральным кабелям и на районные подстанции.
Вам это будет интересно Щупы для мультиметра
Городская подстанция
От районных подстанций через линии электропередач электричество подается в частные, многоквартирные дома и объекты инфраструктуры. В спальных микрорайонах кабеля от подстанций в основном прокладывают под землей, откуда они выходят уже на щиток подъезда, который дальше распределяет ток на каждую розетку и лампочку в доме.
Силовой ящик многоэтажки
Скорость беспроводной зарядки
Как правило, индукционная зарядка происходит медленнее, чем традиционная. Это связано с тем, что энергия, передаваемая через генерируемое электромагнитное поле, может теряться.
Скорость зарядки здесь зависит, среди прочего, от расстояния между устройствами и других внешних факторов. Часть энергии теряется, поскольку она превращается в тепло из-за нагрева зарядной станции. Уменьшение фактической мощности зарядки является естественным. Значение, указанное в спецификации, является значением для идеальных условий. В реальном выражении это будет около 80-90%. Также следует отметить, что исправно работающее зарядное устройство не опускается ниже 80% заявленной производителем мощности, но и не дойдет до максимума.
Возвращаясь к скорости, если мы добавим к этому тот факт, что топовые модели смартфонов имеют обширные функции сверхбыстрой зарядки по кабелю, ответ в этом отношении очевиден. Это правда, что производители индукционных зарядных устройств предлагают всё новые и новые решения, увеличивающие мощность зарядки и гарантирующие стабильные соединения. Однако, вам все равно придётся считаться с тем фактом, что такая зарядка может быть немного медленнее.
История беспроводной передачи энергии
Великий французский физик Ампер в 1820 году путём многочисленных опытов пришёл к выводу о том, что магнитное поле может возбуждать в теле металла электрический ток. Так появился основополагающий закон Ампера.
Майкл Фарадей в 1831 открыл закон индукции, который стал базой для развития такой науки, как электромагнетизм.
Джеймс Максвелл после долгих экспериментов систематизировал свои наблюдения, квинтэссенцией которых в 1864 году стало уравнение Максвелла. Формула объясняла поведение электромагнитного поля.
Никола Тесла усовершенствовал аппарат для генерации электромагнитного поля, изобретённый Генрихом Герцем в 1888 году. На Всемирной выставке в 1893 г., состоявшейся в Чикаго, Тесла продемонстрировал свечение фосфорных лампочек без проводов.
Никола Тесла
Свой вклад в развитие беспроводной передачи энергии сделал русский учёный Александр Попов. В 1895 г. на заседании Русского физико-химического общества он показал изобретённый им детекторный радиоприёмник.
Далее вплоть до наших дней происходило патентование новых изобретений в области беспроводной передачи электрической энергии. Были произведены масса экспериментов, совершенно большое количество открытий. Последнее достижение в этой сфере – это передача электричества на большие расстояния без проводов с помощью технологии Wi-Fi. В 2021 году изобретён мобильный телефон без батареи.
Физические основы явления электромагнитной индукции
Электромагнитная индукция — явление возникновения электрического тока, электрического поля или электрической поляризации при изменении во времени магнитного поля или при движении материальной среды в магнитном поле. Фарадеем была сформулирована основная причина появления тока в замкнутом контуре. В замкнутом проводящем контуре ток возникает при изменении числа линий магнитной индукции, которые пронизывают этот контур.
Чем больше будет это изменение, тем сильнее получится индукционный ток
Неважно, каким образом мы добьемся изменения числа линий магнитной индукции. Например, это можно сделать движением контура в неоднородном магнитном поле, как это происходило в опыте с магнитом или движением катушки
А можем, например, изменять силу тока в соседней с контуром катушке, при этом будет изменяться магнитное поле, создаваемое этой катушкой.
Индукционный ток в катушке из металлической проволоки возникает при введении магнита внутрь катушки и при его выведения из катушки, а также при изменении силы тока во второй катушке, магнитное поле которой пронизывает первую катушку
Появление электрического тока в замкнутом контуре при изменениях магнитного поля, пронизывающего контур, свидетельствует о действии в контуре сторонних сил неэлектростатической природы или о возникновении электродвижущей силы индукции. ЭДС — скалярная физическая величина, характеризующая работу сторонних сил. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура.
Единица магнитного потока в Международной системе единиц называется вебером (Вб). Она определяется на основании использования закона электромагнитной индукции. Магнитный поток через площадь, ограниченную замкнутым контуром, равен 1 Вб, если при равномерном убывании этого потока до нуля за 1 секунду в контуре возникает ЭДС индукции 1 В.
Принципы передачи
Знакомство с пиковыми и другими зонами тарификации электроэнергии
В последних разработках учёных из США и Южной Кореи применялись магнитно-резонансные системы CMRS и DCRS. Корейская технология оказалась более совершенной. Удалось передать электроэнергию на 5 метров. Благодаря компактным дипольным катушкам DCRS, можно запитать всех потребителей в помещении средних размеров без проводов.
Несмотря на это, учёные всего мира заняты получением новых технологий, задача которых – передача энергии на расстоянии в десятки и сотни километров. Уже сегодня развиваются и претворяются в жизнь новые достижения науки в области доставки электроэнергии без проводных линий электропередач.
Беспроводная передача
Передать и распределить ток по потребителям без использования проводов, это реалии наших дней. Об этом способе впервые задумался и воплотил его в жизнь Никола Тесла. На сегодняшний день ведутся разработки в этом направлении. Основных способов всего 3.
Катушками индуктивности является свернутый в спираль изолированный провод. Метод передачи тока состоит из 2 катушек, расположенных рядом друг с другом. Если подать электрический ток на одну из катушек, на второй появится магнитное возбуждение такого же напряжения. Любые изменения напряжения на катушке передатчике, изменятся на катушке приемнике. Подобный способ очень прост и имеет шансы на существование. Но есть и свои недостатки:
- нет возможности подать высокое напряжение и принять его, тем самым невозможно обеспечить напряжением несколько потребителей одновременно;
- невозможно передать электричество на большое расстояние;
- коэффициент полезного действия (КПД) подобного способа — всего 40 %.
На данный момент актуальны способы простого использования катушек, как источника и получателя энергии. Этим способом заряжают электрические самокаты и велосипеды. Есть проекты электромобилей без аккумулятора, но на встроенной катушке. Предлагается использовать дорожное покрытие в качестве источника, а машину в качестве приемника. Но себестоимость прокладки подобных дорог очень высокая.
Микроволны
Микроволны — специальные линии, имеющие длину в 12 сантиметров и частоту в 2,45 гигагерц, которые прозрачны для атмосферы. Вне зависимости от погоды, потеря энергии будет равна 5%. Вначале необходимо преобразование электротока в микроволны, потом их обнаруживание и возвращение в первое состояние. Первая проблема была решена благодаря постановке магнетрона, а вторая — благодаря ректенны или специальной антенны.
Микроволновая передача энергии
Передача электричества посредством лазера, представляет собой источник, преобразующий энергию электричества в лазерный луч. Луч фокусируется на приемник, который его преобразует обратно в электричество. Компания Laser Motive смогла передать при помощи лазера 0.5 Кв электрического тока, на расстояние в 1 км. При этом потеря напряжения и мощности составила 95 %.
Причиной потери стала атмосфера Земли. Луч многократно сужается при взаимодействии с воздухом. Также проблемой может стать обычное преломление луча случайными предметами. Подобный способ, без потери мощности, может быть актуальным только в космическом пространстве.
Для каждого устройства нужна своя зарядка
Та же проблема с позиционированием электромагнитных катушек в итоге ведёт к следующей — отсутствие единого стандарта в отрасли.
Компании договорились использовать слаботочную Qi-технологию и унифицировали устройства. Но то Samsung, то Xiaomi выпускают модели, которые не работают с чужими зарядками на полной скорости.
Высокомощная беспроводная зарядка Xiaomi, представленная пару месяцев назад, работает только при точном попадании на базу.
И заряжает быстро батарею только до 50%, снижая мощность в последствии с 80 до 20 Вт. Причем, даже на максимальной «скорости» эффективность составляет только 65 Вт.
Эта зарядка не работает «на пониженных оборотах» с другими смартфонами — катушки имеют другой размер. По той же причине стандартные Qi-зарядки «раскачиваются» с соответствующим Mi 11 Ultra только до 10 Вт.
Нужен единый стандарт процесса, иначе инфраструктура будет работать только для одного производителя.
Даже в отношении смартфонов пользователю это не выгодно. А что говорить об автомобилях?
Особенно когда существующие прототипы от Momentum Dynamic обещают невероятные невозможные 100% КПД?
Беспроводная зарядка – лучше или нет
Популярность индуктивной зарядки постоянно растёт. В основном, из-за удобства. Каждый раз, когда мы хотим зарядить наш смартфон, нам больше не нужно подключать к нему кабель – просто положите его на зарядное устройство, и энергия будет восполняться без проводов. Это решение отлично подходит для офиса, ночной полки или, например, во время вождения автомобиля, повышая безопасность за счёт отсутствия незакрепленных кабелей.
И ещё один важный момент – чтобы всё было понятно – вы можете заряжать любое устройство, поддерживающее этот стандарт зарядки, с помощью индукционного зарядного устройства. Это значит, что такое зарядное устройство будет полезно как для смартфона, так и, например, для браслета или наушников с индукционной катушкой.
Конечно, у беспроводной зарядки есть свои плюсы и минусы. Я собрал их ниже.
Преимущества:
- Удобство – каждый раз, когда вы кладёте телефон в нужное место, он будет заряжаться, без необходимости постоянно подключать кабели и возможности обрыва или повреждения контакта
- Зарядка плавная – начинается сразу после помещения устройства на зарядное устройство
- Безопасность – особенно важна если у вас есть дети, которые неожиданно вытаскивают телефон из точки зарядки – они не порвут кабель и не повредят контакт, а техника просто перестанет заряжаться. Кроме того, когда вы кладёте телефон или тянетесь за ним, он не соприкасается с кабелями, токопроводящими элементами или розеткой
- Качество изготовления и продуманный дизайн зарядных устройств позволяют использовать телефон под углом, например, для просмотра фильма, не прерывая процесс зарядки
- Эстетика – насколько лучше топовый смартфон выглядит без кабеля? Ответьте сами. Кроме того, сами индукционные зарядные устройства имеют элегантный дизайн
Недостатки:
- Цены на устройства, поддерживающие индуктивную зарядку, выше стандартных
- В большинстве случаев предоставляют меньше энергии и, следовательно, большее время зарядки
- Беспроводное зарядное устройство должно быть постоянно подключено к источнику питания
- Расположение – помните, что индукционное зарядное устройство будет заряжать оборудование только с расстояния, указанного производителем
- Возможные потери энергии во время зарядки
Тепловые потери никто не отменял
Второй проблемой являются уже упомянутые выше тепловые потери: энергия, которая теряется в процессе преобразования электрического тока из переменного в постоянный и при передаче его на расстояние, превращается в тепловую.
Происходит нагрев. Преимущественно самого зарядного устройства, а за счет этого — и заряжаемых гаджетов.
Для обычного LiPo-аккумулятора потери даже при обычной зарядке составляют не менее 15-20%. Добавляем потери выше, характерные для беспроводной передачи — получаем очень много тепла.
Все это куда-то нужно направить и рассеять в пространстве: LiPo батареи очень боятся любого нагрева — часто достаточно 100 градусов для маленького пожара.
Ещё одна проблема кроется в устройстве беспроводной зарядке. Что это? Набор электромагнитных катушек с парой чипов, которые передают поле в такие же катушки заряжаемому гаджету.
Плохое позиционирование и разные размеры катушек увеличивают потери и нагрев, снижая скорость зарядки.
Иногда это пытаются решать магнитами (MagSafe), иногда — перемещаемыми катушками или увеличением их числа, иногда — просто отключая процесс при нагреве. Результаты неплохие, но только для малых токов.
Увеличиваем мощность передачи — получаем кратное увеличение потерь. Фактически, даже 65 Вт без точного позиционирования можно рассматривать в виде маленького пожара.
Стоит ли рисковать или оставить технологию в виде прототипа на тот момент, когда люди привыкнут использовать беспроводные зарядки?
Наиболее эффективный метод
Планета Земля является огромным конденсатором. Литосфера, в основном, проводит электричество за исключением небольших ее участков. Существует теория, что беспроводная передача энергии может осуществляться через земную кору. Суть такова: источник тока надежно контактирует с поверхностью земли, переменный ток определенной частоты перетекает с источника в кору и распространяется во всех направлениях, через определенные промежутки в земле размещаются приемники электротока, с которых он передается потребителям.
Суть теории в том, чтобы принимать и использовать ток только одной заданной частоты. Как в радиоприемнике настраивается частота приема радиоволн, так и в таких электроприемниках будет регулироваться частота принимаемого тока. Теоретически таким методом возможно будет передавать электроэнергию на очень большие расстояния, если частота переменного тока будет низкой, порядка нескольких Гц.
История
Беспроводная передача энергии в качестве альтернативы передачи и распределения электрических линий, впервые была предложена и продемонстрирована Никола Тесла. В 1899 году Тесла презентовал беспроводную передачу на питание поля люминесцентных ламп, расположенных в двадцати пяти милях от источника питания без использования проводов. Но в то время было дешевле сделать проводку из медных проводов на 25 миль, а не строить специальные электрогенераторы, которых требует опыт Тесла. Патент ему так и не выдали, а изобретение осталось в закромах науки.
В то время как Тесла был первым человеком, который смог продемонстрировать практические возможности беспроводной связи еще в 1899 году, сегодня, в продаже есть совсем немного приборов, это беспроводные щетки наушники, зарядки для телефонов и прочее.
Примеры транспортировки энергии по воздуху
Рассмотренная выше проблема может быть решена путем выбора альтернативного варианта распределения энергии, который мог бы обеспечить гораздо более высокую эффективность, низкую стоимость передачи и избежать хищения энергии. Передача энергии микроволновым излучением является одной из перспективных технологий и может стать достойной альтернативой.
Беспроводной передачей энергии занимался еще Никола Тесла, который показал, что он действительно “отец беспроводной связи”. Никола Тесла первым задумал идею беспроводной передачи энергии и еще в 1891 году продемонстрировал “передачу электрической энергии без проводов», которая зависела от электропроводности.
В 1893 году Тесла продемонстрировал освещение вакуумных ламп без использования проводов для передачи электроэнергии на Всемирной Колумбийской экспозиции в Чикаго. Башня Уорденклиффа была спроектирована и построена Теслой главным образом для беспроводной передачи электроэнергии, а не телеграфии.
- В 1904 году дирижабль с двигателем 0,1 лошадиной силы приводился в движение путем передачи мощности через пространство с расстояния не менее 30 метров.
- В 1961 году была опубликована первая статья, предлагающая микроволновую энергию для передачи энергии, а в 1964 году продемонстрирована модель вертолета с микроволновым питанием, которая получала всю мощность, необходимую для полета от микроволнового луча на частоте 2,45 ГГц из диапазона частот 2,4-2,5 ГГц, который зарезервирован для промышленных, научных и медицинских приложений.
- Эксперименты по передаче энергии микроволновым излучением без проводов в диапазоне десятков киловатт были проведены в Калифорнии в 1975 году и на острове Реюньон (Индийский океан) в 1997 году.
- Аналогичным образом, первый в мире самолет без топлива, работающий на микроволновой энергии с земли, был зарегистрирован в 1987 году в Канаде.
- В 2003 году Центр летных исследований НАСА продемонстрировал модель самолета с лазерным питанием в помещении.
- В 2004 году Япония предложила беспроводную зарядку электромобилей с помощью микроволновой передачи энергии. Новая компания представила технологию беспроводной передачи энергии на выставке потребительской электроники 2007 года.
- Исследовательская группа физиков также продемонстрировала беспроводное питание лампочки мощностью 60 Вт с эффективностью 40% на расстоянии 2 м с использованием двух катушек диаметром 60 см.
- Сейчас уже серийно выпускается беспроводная зарядка для смартфонов и других устройств.
- Электромобиль Тесла и другие современные авто уже имеет встроенную беспроводную зарядку для смартфонов и не горами зарядка самого электромобиля.
Концепция беспроводной передачи энергии микроволновым излучением поясняется функциональной блок-схемой. На передающей стороне источник питания преобразует энергию в микроволны которые контролируются электронными управляемыми схемами. Передающая антенна излучает мощность равномерно через свободное пространство к антенне. На приемной стороне антенна принимает передаваемую мощность и преобразует микроволновую мощность в мощность постоянного тока. Передача осуществляется на частоте 2,45 ГГц или 5,8 ГГц. Другие варианты частот — 8,5 ГГц, 10 ГГц и 35 ГГц.
Самая высокая эффективность около 90% достигнута на частоте 2.45 ГГц.