Источники постоянного тока применяют для питания сварочной дуги 1

Общая информация

Для начала немного общей информации о сварочной дуге. Дуга представляет собой мощный электрический разряд, который формируется между основным металлом и концом электрода. Сварочная дуга генерирует высокотемпературное тепло, которого достаточно для сварки большинства металлов.

Чтобы поджечь дугу, необходим внешний источник тока. В общих чертах основные источники питания для сварки — это трансформаторы, выпрямители, генераторы и инверторы. Проще говоря, сварочные аппараты типы трансформатор, выпрямитель или генератор. А также инверторный сварочный аппарат. Но в рамках этой статьи мы дадим больше информации, поскольку источники для питания сварочной дуги имеют множество особенностей.

Далее мы расскажем, какие существуют сварочные источники питания, каковы их характеристики и какие требования к ним предъявляются.

Классификация источников питания сварочной дуги

По типу сварочного тока

Итак, мы уже разобрали, что источником питания может быть трансформатор, выпрямитель и генератор. Но в более широком смысле все эти источники можно поделить еще на несколько подгрупп. Одна из них — тип тока, который генерирует источник.

Источник может генерировать постоянный или переменный ток. Классический трансформатор и генератор повышенной частоты зачастую генерирует переменный ток. Сварочный выпрямитель генерирует постоянный ток.

Чем отличается источник питания на постоянном токе и на переменном?

Сварочный аппарат переменного тока и постоянного в чем разница? Давайте разбираться.

Аппарат на переменном токе очень прост: он собирается из понижающего трансформатора и специального механизма, который регулирует силу сварочного тока. При применении сварочной дуги переменного тока сварка ведется на переменном токе соответственно.

Аппарат на постоянном токе более технологичен. Его основные компоненты — это понижающий трансформатор, устройство, выпрямляющее ток (выпрямитель), которое преобразовывает поступающий переменный ток в постоянный, и устройство, регулирующее силу тока. Соответственно, здесь сварка ведется на постоянном токе.

Это основные конструктивные различия. Есть еще различия эксплуатационные. Сварка постоянным током предпочтительнее, поскольку у этого источника тока больше преимуществ. Аппараты на постоянном токе намного компактнее и проще в применении, они технологичнее, и в целом считаются более современными. Сварка переменным током сложнее и характеризуется нестабильностью горения дуги.

Также упомянем инверторные источники питания, которые на данный момент считаются самыми технологичными и распространенными. Это сложные аппараты, которые многократно преобразовывают ток, сглаживая его с помощью специальных фильтров, и впоследствии выпрямляют. В результате сварщик получает постоянный ток, а значит крайне стабильную дугу, которая легко поджигается. Также инверторные аппараты снабжаются электронным блоком управления, который прост в применении.

Инверторный источник сварочного тока — самый распространенный тип на данный момент. Такие аппараты самые компактные и легкие (в продаже есть модели весом не более 3-5 кг), при этом они оснащаются дополнительным функционалом, упрощающим сварку.

По количество постов и способу установки

Здесь все намного проще. Вне зависимости от типа источника питания, будь он переменный или постоянный, трансформатор или инвертор, в любом из них может быть либо один разъем для сварки, либо 3 и более.

Аппараты с одним разъемом называются однопостовыми и предназначены для генерирования одной сварочной дуги. Т.е., для применения одним сварщиком. Аппараты с большим количеством разъемов называются многопостовыми, и сразу несколько сварщиков могут производить сварку от одного аппарата.

Источники питания по способу установки могут быть мобильными (переносными) или стационарными.

Требования к источникам питания сварочной дуги

Ко всем источникам питания дуги предъявляются требования, обязательные для осуществления дуговой сварки. Так источники питания должны генерировать стабильную дугу, которая при этом должна легко поджигаться. Также источник должен выдавать необходимые вам характеристики, а именно силу сварочного тока и напряжение дуги.

Еще одно немаловажное требование — это возможность быстрого восстановления напряжения дуги после короткого замыкания, когда напряжение падает до нулевой отметки. И, наконец, источник должен быть оснащен устройством, которое позволит регулировать силу сварочного тока до, вовремя и после выполнения работ

Инвертор

Принцип действия этих устройств заключается в преобразовании переменного тока сети в постоянный. Далее постоянный ток опять преобразуется в переменный, но только высокой частоты. После этого переменный ток подаётся на высокочастотный сварочный трансформатор который понижает напряжение и преобразует переменный ток в постоянный.

Инверторы на сегодняшний день одни из самых популярных источников питания сварочной дуги. Это обусловлено рядом преимуществ:

  • постоянный ток с плавным регулированием;
  • доступная цена;
  • стабильное горение сварочной дуги и её лёгкое зажигание;
  • малые габаритные размеры;
  • малое энергопотребление
  • малый вес.

Всё это делает инверторные источники питания незаменимыми в быту, а также на больших предприятиях.

Подготовка металла под сварку

К основным операциям подготовки металла под сварку относятся: правка и очистка проката; механическая или термическая резка при заготовке деталей и полуфабрикатов; обработка кромок, подлежащих сварке.

Обработка кромок стыковых соединений заключается в отбортовке их при толщине металла до 4 мм или разделке кромок для создания скоса и притупления при большей толщине металла.

При дуговой сварке повышенные требования предъявляются к чистоте кромок и поверхности прилежащих к ним зон свариваемых деталей.

В целях избежания образования в швах пор, шлаковых и других включений торцевые поверхности кромок и прилегающие к ним зоны металла шириной 25—30 мм подлежат очистке от ржавчины, краски, масляных и других загрязнений. Очистку выполняют металлическими щетками, абразивными материалами или инструментом, а также газопламенной обработкой.

При сборке конструкций, помимо применения инвентарных и других сборочных приспособлений, кондукторов и кантователей, для фиксации взаимного расположения элементов конструкций и детален часто используют прихватки (короткие швы), осуществляемые ручной дуговой сваркой.

Длина швов-прихваток обычно 50—100 мм.

Размеры сечений прихваток не должны превышать 1/3 основных швов (при толщине свариваемого металла более 5 мм). Поверхность прихваток следует зачищать от шлака и загрязнений. При выявлении дефектов их удаляют абразивным инструментом и швы выполняют вновь.

В зависимости от формы и взаимного расположения свариваемых кромок, размеров поперечного сечения шва и положения его в пространстве при ручной дуговой сварке осуществляют простые или сложные траектории движения рабочим (с горящей дугой) концом электрода, которые позволяют: управлять тепловым потоком, охлаждая металл при отводе дуги и увеличивая тепловое воздействие при прекращении движения электрода; выполнять однопроходные швы различной формы и размеров сечения; уменьшать возможность натека или прожога металла; предотвращать стекание металла при наклонном или отвесном положении сварочной ванны.

При перемещении конца электрода вдоль линии соединения без колебательных поперечных движений ширина валика шва не превышает 0,8—1,5 диаметра электрода. Поперечные движения конца электрода обеспечивают получение валика увеличенной ширины.

Инверторы

Инверторы — особый класс источников питания сварочной дуги. Это сварочные аппараты, которые оптимально подходят для бытовых нужд.

Благодаря малым размерам и удобству в обращении они активно используются там, где нужна мобильность, а также есть ограничения по мощности, которую можно взять от сети.

Большинство инверторных источников питания сварочной дуги можно включать в обычную розетку, не боясь перегруза сети.

Принцип действия этих устройств заключается в инверсии — зеркальном превращении одного состояния энергии в другое. Инверторный аппарат осуществляет сварку переменным током высокой частоты, который он получает из постоянного тока, а его, в свою очередь — из промышленного переменного.

Инверсия позволяет увеличить частоту тока в 1000 раз — до 50 кГц. За счет этого удалось добиться существенного снижения размеров и веса аппарата.

Благодаря некоторым инверторным источникам питания сварочной дуги можно производить сварку и постоянным, и переменным током, в зависимости от режима.

К их достоинствам, кроме габаритов, относится малое энергопотребление, высокий уровень безопасности, плавная регулировка выходного тока и малое разбрызгивание расплава при сварке.

Список недостатков невелик. Аппарат нуждается в тщательном уходе и защите от пыли, не любит морозов, и не очень дешев в ремонте. Инвертор можно назвать оптимальным аппаратом для ручной сварки.

Выпрямитель

Как следует из названия, это устройство, выпрямляющее переменный ток, то есть преобразующее его в постоянный. Для этого используются полупроводниковые элементы на основе селена либо кремния.

Выпрямители могут быть однофазные и трехфазные, стационарные или мобильные, иметь любую вольт-амперную характеристику — либо жестко заданную производителем, либо изменяемую пользователем согласно его нуждам.

У выпрямителей есть много достоинств. Это бесшумная работа, высокий КПД (выше, чем у трансформаторов), широкий диапазон использования (можно варить любые металлы и сплавы). У такого источника питания малые потери на холостом ходу, сравнительно небольшие габариты и вес и малое потребление энергии.

Недостатков у них немного, но, к сожалению, они довольно существенные. Выпрямители, как источники питания сварочной дуги, очень сильно нагреваются во время рабочего процесса, поэтому нуждаются в хорошей системе охлаждения, за которой надо тщательно следить.

Кроме того, они очень чувствительны к скачкам напряжения, не любят пыли, которая может вывести из строя систему охлаждения, и достаточно дороги.

Общая информация

Для начала немного общей информации о сварочной дуге. Дуга представляет собой мощный электрический разряд, который формируется между основным металлом и концом электрода. Сварочная дуга генерирует высокотемпературное тепло, которого достаточно для сварки большинства металлов.

Чтобы поджечь дугу, необходим внешний источник тока. В общих чертах основные источники питания для сварки — это трансформаторы, выпрямители, генераторы и инверторы. Проще говоря, сварочные аппараты типы трансформатор, выпрямитель или генератор. А также инверторный сварочный аппарат. Но в рамках этой статьи мы дадим больше информации, поскольку источники для питания сварочной дуги имеют множество особенностей.

Далее мы расскажем, какие существуют сварочные источники питания, каковы их характеристики и какие требования к ним предъявляются.

Выбор источника питания для дуговой сварки

Разумеется, помимо силовых характеристик сварочное оборудование выбирают по мобильности, габариту, весу. Говоря о достоинствах и недостатках источников питания, стоит начать с самого первого вида сварочников.

Трансформатор

Оборудование с вторичной обмоткой преобразует напряжение, за счет индуктивных полей с 80 вольт можно опустить напряжение до 20-ти. Это самый простой и громоздкий тип сварочного аппарата. Зато очень надежный, мало зависит от условий внешней среды, не боится влажности, запыленности. Трансформатор можно соорудить самостоятельно, нужный вольтаж получают за счет определенного числа витков вторичной обмотки. Коэффициент полезного действия оборудования довольно высокий, стоимость небольшая. Когда объем работы небольшой, сварщики с опытом работы предпочитают для гаража, дома приобретать трансформаторы.

Выпрямитель

Уже из названия ясно, что речь пойдет об источнике постоянного тока. Для преобразования используются полупроводники, они пропускают электричество только в верхнем диапазоне синусоиды. Благодаря использованию полупроводников, наличию электросхемы, возможности у выпрямителей шире, чем у трансформаторов. При смене полярности можно регулировать температуру на контактах: при прямой полярности сильнее греется электрод, при обратной – металл. КПД у выпрямителей выше, чем у трансформаторов, малые потери на холостом ходу.

Большой минус – сварочные аппараты очень греются, им периодически требуется передышка, чтобы прийти в норму или дополнительная система охлаждения.

Генератор

Электричество вырабатывается вращением вала в постоянном магнитном поле. Работают устройства на бензине, дизтопливе, есть стационарные установки на угле, брикетированном топливе. Главные достоинства:

  • электричество со стабильными характеристиками;
  • большой ампераж, до 1000 А.

Минусы – изрядные габариты, низкий КПД, плюс выхлопные газы, шум, вибрация.

Инвертор

Инверторный тип источников – самый технологичный. Небольшие размеры, высокая мощность, дополнительные функции: быстрый розжиг, стабильная дуга и другие. Бытовые устройства работают от сети 220 В, мощные установки подключают к трехфазным 380 В. Инверсия улучшает частотные характеристики до 50 кГц. Недостатки тоже есть: оборудование боится высокой влажности, низких температур, запыленности. Корпус профессиональных источников дополнительно оснащают защитой.

Источники тока для сварки, краткий FAQ

Сварка, отличия источников тока.

Очень часто можно встретить вопрос: — Как переделать трансформатор или инвертор для сварки ПА.

В этой небольшой статье я обьясню конструктивные, а так же различия в так называемых ВАХ (вольт- амперная харатеристика) источников тока, в дальнейшем ИТ.

Для сварки покрытыми электродами и аргонно- дуговой сварки используеться падающая характеристика тока. До зажигания дуги аппарат работает в режиме холостого хода, при этом напряжение холостого хода, в зависимости типа аппарата и предьявляемыми требованиями ТБ, до 113 вольт, сила тока при этом равна нулю. Такое большое напряжение холостого хода необходимо для уверенного поджига дуги. В инверторных источниках тока для этого может использоваться фунция Hot start, при сравнительно небольшом напряжени холостого хода эта фунция обеспечивает уверенный поджиг дуги путем кратковременного повышения напряжения в момент зажигания.

При касании электродом поверхности металла вступает в действие закон Ома, при небольшом сопротивлении перехода электрод – металл, напряжение падает практически до нуля, сила тока при этом растет, происходит короткое замыкание и поджиг дуги. Дуга являеться ничем иным как проводником тока, на который так же действует магнитное поле, по сути своей дуга являеться одним из агрегатных состояний веществ, а именно плазмой. Процесс горения дуги сопровождаеться выделением большого количества тепла что и позволяет осуществлять процесс сварки. Так же подобная ВАХ позволяет управлять длинной дуги без ее погасания, т.е при изменении расстояния от электрода до свариваемого материала дуга продолжает гореть и чем круче кривая тем стабильнее остаеться дуга. Так же по стабильности дуги характеризуеться качество ИТ.

Посмотрим на картинку. При увеличении длинны дуги ток остается постоянным, а напряжение меняется, в результате мы получаем более горячую дугу, но при сварке покрытыми электродами этого делать не рекомендуется так как при этом нарушается защита сварочной ванны.

ВАХ дуги для сварки полуавтоматом полого-падающая. Напряжение изменяеться в зависимости от толщины проволоки и толщины свариваемого металла, в пределах от 18 до 28 вольт. При такой ВАХ возможно явление саморегуляции длинны дуги при сварке. При увеличении расстояния между свариваемой деталью и контактной дюзой длинна дуги сначала увеличиваеться , а подача проволоки остается постоянной поэтому увеличивая вылет проволоки мы увеличиваем сопротивление и уменьшаем силу тока, но при постоянном напряжении длинна дуги остается постоянной.

Различие ИТ. Трансформаторные ИТ различить очень просто, по обмоткам. Источник с постоянным током (падающая характеристика) имеет обмотки расположенные на одном сердечники друг возле друга, в случае с источником постоянного напряжения (жесткая характеристика) вторичная обмотка намотана поверх первичной. Инверторные источики тока различить по внешнему виду невозможно.

Что будет если подключить подачу проволоки к трансформатору с постоянным током? Если просто подключить подачу проволоки к трансформатору то сварка будет очень посредственной, так как будет отсутствовать автоматическая регулировка дуги, но если ввести зависимость подачи от тока то подача проволоки будет являтся «стабилизатором» длинны дуги.

Дополнение статьи приветствутся, картинки честно позаимствовал из интернета.

Надеюсь в дальнейшем эта статья поможет избежать вопросов связанных с переделкой трасформаторов.Изменено 4 марта, 2013 пользователем s_even

Требования к источникам питания сварочной дуги

Любой источник питания при дуговой сварке выбирается, исходя из эксплуатационных свойств:

  • Электрод должен разжигаться при соприкосновении с металлической заготовкой, контакты замыкают электрическую цепь.
  • Когда присадка плавится, по капле возможно короткое замыкание. Сварочный аппарат в такой ситуации не должен выходить из строя, сварочная дуга должна поддерживаться стабильно.
  • До вспышки дуги между деталью и электродом возникает краткосрочное короткое замыкание длиной в доли секунды. От скорости восстановления первоначального напряжения зависит динамическая характеристика источника питания.
  • От режима холостого хода сварочное оборудование должно быстро переходить в рабочий ход, то есть напряжение с 60–80 вольт должно упасть до требуемых 18–20 В.

Требования ко всем источникам, применяемым для питания сварочной дуги, одинаковые. Напрашивается вывод, что эффективность работы сварочного оборудования зависит от способности поддерживать стабильное горение дуги, начиная с момента розжига. Последний момент – регуляторы, сварочные аппараты предназначены для большого диапазона рабочего тока, устанавливать нужные параметры тока должно быть удобно.

Основные требования

На сегодняшний день все источники питания должны соответствовать следующим основным требованиям:

  • иметь в наличии плавную регулировку режимов сварки во всём диапазоне;
  • иметь в наличии приборы для контроля режимов сварки;
  • обеспечивать стабильное горение дуги;
  • иметь высокие динамические характеристики;
  • соответствовать основным требованиям по электробезопасности.

Наличие плавной регулировки и приборов контроля, обеспечивает точную настройку необходимых режимов сварки.

Динамические свойства сварочного аппарата определяются временем восстановления напряжения холостого хода после короткого замыкания в процессе сварки. Чем быстрее восстанавливается напряжение, тем лучше его динамические характеристики. Восстановление не должно превышать 0,05с.

Для повышения стабильности горения дуги дополнительно могут применяться осцилляторы. Они преобразующие низкое напряжение промышленной частоты в импульсы высокого напряжения и высокой частоты. Наложение этих импульсов на дуговой промежуток повышает устойчивость горения дуги.

Выбор режима сварки

Итак, какие именно факторы влияют на выбор того или иного режима ручной дуговой сварки. В первую очередь, это:

  • Сила тока;
  • Диаметр используемых электродов и длина сварочной дуги;
  • Скорость сварки;
  • Полярность (более подробно о том, что даёт обратная и прямая полярность, читайте здесь);
  • Количество соединений.

Главные критерии при выборе режима для ММА сварки, конечно же, задаёт характер горения сварочной дуги, стабильность которой зависит от того, насколько правильно подобрана сила тока для каких-то конкретных электродов. Чем выше будет сила тока, тем большими по диаметру электродами можно варить толстый металл. Простыми словами, большие токи обеспечивают лучшее горение дуги и хороший прогрев металла.

Следует знать, что при вертикальном наложении шва, сила тока изменяется в меньшую сторону, чем при горизонтальном, примерно на 15%. Для потолочных швов, значение сварочного тока, будет и того меньше, примерно на 20%. Очень часто значения касательно силы тока, есть на упаковке с электродами. К тому же, определить, какую силу тока выставить на сварочном аппарате, можно из нижеприведённой таблицы со значениями.

Средние показатели сварочного тока (А):

  • Диаметр электрода (1,6 мм) — электрод с рутиловым и основным покрытием (30-55 А) и (50-75 А);
  • Диаметр электрода (2 мм) — электрод с рутиловым и основным покрытием (40-70 А) и (60-100 А);
  • Диаметр электрода (2,5 мм) — электрод с рутиловым и основным покрытием (50-100 А) и (70-120 А);
  • Диаметр электрода (3 мм) — электрод с рутиловым и основным покрытием (80-130 А) и (110-150 А);
  • Диаметр электрода (4 мм) — электрод с рутиловым и основным покрытием (120-170 А) и (140-200 А);

В свою очередь, чтобы правильно определить диаметр электрода, обязательно нужно учесть толщину металла, способ сварки и геометрическое расположение шва. Так, например, для каждого электрода подбирается «свое» собственное значение тока. Если сильно увеличить при этом его показатели, то можно легко прожечь металл или наоборот, не добиться качественного и надежного сварочного шва.

Немного исторических сведений

На рубеже XIX и XX столетий активно внедрялся в быт постоянный электроток. Его популяризатором выступал Томас Эдисон. Но он столкнулся с неразрешимой проблемой: требовалось строить значительное количество промежуточных электроподстанций, чтобы электричество дошло до потребителя с заданными параметрами. Через каждые 3−4 километра устанавливалась подстанция, что было очень затратным и нерентабельным делом.

Решить эту проблему взялся молодой и талантливый физик Никола Тесла. К ней он подошел с новаторской идеей — использовать электроток с изменяемыми во времени показателями напряжения и направления движения. Проблема решалась просто и эффективно:

  • потери на сопротивление проводника снижались в несколько раз;
  • источники электротока переменного типа конструкции Тесла были проще и дешевле;
  • упрощались и сами бытовые приборы, работавшие от электротока с изменяемыми во времени показателями.

Но эта идея для Томаса Эдисона была неприемлема, так как полностью уничтожались его уже готовые разработки и ему грозили большие финансовые потери. Эдисон упорно продвигал свою идею электротока постоянного типа, проводя многочисленные публичные испытания и демонстрации.

Вам это будет интересно Проверка конденсатора мультиметром

В прессе по его указке и при его финансировании была организована настоящая травля научного оппонента. Но история расставила все по своим местам: сегодня человечество должно благодарить Николу Тесла, так как без переменного тока цивилизация не достигла бы существующего уровня развития техники, науки и комфорта в быту.

Выбор источника питания для дуговой сварки

Разумеется, помимо силовых характеристик сварочное оборудование выбирают по мобильности, габариту, весу. Говоря о достоинствах и недостатках источников питания, стоит начать с самого первого вида сварочников.

Трансформатор

Оборудование с вторичной обмоткой преобразует напряжение, за счет индуктивных полей с 80 вольт можно опустить напряжение до 20-ти. Это самый простой и громоздкий тип сварочного аппарата. Зато очень надежный, мало зависит от условий внешней среды, не боится влажности, запыленности. Трансформатор можно соорудить самостоятельно, нужный вольтаж получают за счет определенного числа витков вторичной обмотки. Коэффициент полезного действия оборудования довольно высокий, стоимость небольшая. Когда объем работы небольшой, сварщики с опытом работы предпочитают для гаража, дома приобретать трансформаторы.

Выпрямитель

Уже из названия ясно, что речь пойдет об источнике постоянного тока. Для преобразования используются полупроводники, они пропускают электричество только в верхнем диапазоне синусоиды. Благодаря использованию полупроводников, наличию электросхемы, возможности у выпрямителей шире, чем у трансформаторов. При смене полярности можно регулировать температуру на контактах: при прямой полярности сильнее греется электрод, при обратной – металл. КПД у выпрямителей выше, чем у трансформаторов, малые потери на холостом ходу.

Большой минус – сварочные аппараты очень греются, им периодически требуется передышка, чтобы прийти в норму или дополнительная система охлаждения.

Генератор

Электричество вырабатывается вращением вала в постоянном магнитном поле. Работают устройства на бензине, дизтопливе, есть стационарные установки на угле, брикетированном топливе. Главные достоинства:

  • электричество со стабильными характеристиками;
  • большой ампераж, до 1000 А.

Минусы – изрядные габариты, низкий КПД, плюс выхлопные газы, шум, вибрация.

Инвертор

Инверторный тип источников – самый технологичный. Небольшие размеры, высокая мощность, дополнительные функции: быстрый розжиг, стабильная дуга и другие. Бытовые устройства работают от сети 220 В, мощные установки подключают к трехфазным 380 В. Инверсия улучшает частотные характеристики до 50 кГц. Недостатки тоже есть: оборудование боится высокой влажности, низких температур, запыленности. Корпус профессиональных источников дополнительно оснащают защитой.

Модель электрической дуги переменного тока

В библиотеке LTSpice, к сожалению, отсутствует модель сварочной дуги. Поэтому такую модель придется создавать самим из стандартных элементов, имеющихся в библиотеке LTSpice.

Напряжение дуги имеет нелинейную зависимость от тока дуги Iсв. Однако на интересующем нас участке ВАХ почти линейна и неплохо описывается уравнением (1). Эту зависимость можно имитировать при помощи диода, модель которого имеет пороговое напряжение прямой проводимости Vfwd = 20 В, а сопротивление прямой проводимости Ron = 0,04 Ом (рис. 4). Такая модель хорошо подходит для имитации дуги постоянного тока, и ее параметры определяются при помощи директивы “.model Duga D(Ron=40m Roff=33k Vfwd=20)”.

Рис. 4. Простейшая модель дуги постоянного тока

Для создания простейшей модели дуги переменного тока можно использовать две модели дуги постоянного тока, включенные встречно-параллельно, или один диод с равными прямыми и обратными параметрами проводимости и порогового напряжения. Простейшая модель дуги переменного тока на основе диода определяется директивой “.model Duga D(Ron=40m Roff=33k Vfwd=20 Vrev=20)” (рис. 5). Однако эта модель не отражает важную особенность дуги, которая состоит в том, что в конце каждого полупериода дуга переменного тока гаснет, и для повторного зажигания к ней нужно приложить повышенное напряжение. Напряжение повторного зажигания зависит от многих факторов, таких, например, как длина и ток дуги, материал обмазки и электрода, а также длительности бестоковой паузы, предшествующей повторному зажиганию. Кроме этого, напряжение повторного зажигания зависит от полярности напряжения, приложенного к дуговому промежутку. Если при прямой полярности («плюс» на изделии) требуется небольшое повышение напряжения, то при обратной полярности («минус» на изделии) напряжение повторного зажигания может превышать нормальное напряжение дуги в 1,5-3 раза .

Рис. 5. Простейшая модель дуги переменного тока

Относительно корректная модель дуги переменного тока показана на рис. 6. На рабочем участке дуги ее поведение моделируется источниками напряжения V1 (для прямой полярности) и V2 (для обратной полярности). Эти источники напряжения коммутируются с помощью мощных тиристоров U1 и U2. Уровни повторного зажигания дуги имитируются стабилитронами D1 (напряжение пробоя 33 В) и D2 (напряжение пробоя 47 В). Резистор R2 имитирует тлеющий разряд, предшествующий повторному зажиганию дуги переменного тока.

Рис. 6. Корректная модель дуги переменного тока

Рассмотрим модели сварочных источников, использующих активные и реактивные сопротивления для формирования внешней ВАХ.

Классификация

Общепринята градация блоков питания по нескольким признакам, обусловленным электромеханическими свойствами источников электротока. Начинающим сварщикам достаточно знать основные критерии классификации:

Для питания сварочной дуги возможно два способа получения рабочего тока:

  • преобразованием энергии из силовой электросети (выделяют однофазные и трехфазные сварочники);
  • генерацией электричества рабочих параметров из другого вида энергии.

Группировка по виду вырабатываемого тока:

  • переменного;
  • комбинированные, которые можно переключать с постоянного на переменный и наоборот;
  • постоянного.

Способ преобразования электричества: изменением вольтажа и ампеража, выпрямлением – переменный ток преобразуется в постоянный.

Мобильность источников, питание дуги бывает стационарным (подключение к магистральным электросетям) и автономным (использование переносных генераторов или аккумуляторов).

Способ регулировки рабочих параметров дуги (напряжения, ампеража). В трансформаторах меняется число задействованных витков: положением шунта, подвижностью катушки, секционированием вторичной обмотки.

Градация источников питания по внешним характеристикам тока сварочной дуги – это оценка зависимости среднего напряжения на контактах (держателе электрода и клемме, закрепляемой на металле) от ампеража. Параметры вольт-амперной характеристики оборудования бывают двух видов:

  • Падающая ВАХ характеризуется высоким напряжением холостого хода, превышающим рабочее до 2,5 раз.
  • Жесткая отличается стабильностью напряжения на клеммах в процессе сварки. Ампераж короткого замыкания превышает номинальный сварочный в 2 или 3 раза.

Общая информация

Переменный или постоянный ток — что лучше? В 21 веке этот вопрос не дает покоя многим сварщикам. Раньше сварочный аппарат в любом случае работал на переменке, и у мастера фактически не было выбора. Но с появлением на рынке выпрямителей и инверторов, выбор увеличился в сотни раз. И теперь уже непросто разобраться, какой аппарат выбрать.

Мы решили помочь вам и рассказать об особенностях как переменного, так и постоянного тока.

Начнем с переменки. Переменный ток — это основа. Именно его мы получаем из розетки, когда подключаем сварочный аппарат или любой другой электроприбор. Сварочники старого формата (трансформаторы) работали на переменном токе. Такой аппарат позволял из 220 Вольт получить сварочный ток силой в несколько сотен Ампер. Чего более чем достаточно для ручной дуговой сварки.

Но времена изменились. Технологический прогресс не стоял на месте, и со временем появились аппараты, которые научились преобразовывать поступающий из сети переменный ток в постоянный. К таким аппаратам относится выпрямитель и инвертор. Учтите, что когда говорят сварочный инвертор переменного тока, имеют в виду, что данное устройство использует для питания переменный ток, но преобразовывает его в постоянный.

Что все это значит на практике?

Когда в продаже появились аппараты постоянного тока, сварщики получили уникальную возможность сравнить их с традиционными аппаратами на переменке. И они были удивлены. По сравнению с современными инверторами и выпрямителями, трансформаторы были гораздо сложнее в применении.

Все дело в характеристиках переменного тока. Из-за них дуга поджигается неохотно, горит нестабильно. В итоге швы получаются менее ровными и прочными. Это особенно заметно, когда работу выполняет не совсем опытный мастер.

Также оказалось, что аппараты на переменном токе генерируют бОльший шум, который влияет на работоспособность сварщика. К тому же, классический трансформатор потребляет больше сварочных электродов, а металл в процессе работ постоянно разбрызгивается.

На этом месте вы наверняка подумали: «Ну и зачем тогда нужны аппараты на переменном токе, если у так много недостатков?». На самом деле, не все так просто. Не зря вопрос «Что лучше: постоянный или переменный ток?» вызывает столько вопросов и обсуждений.

Аппараты на переменке (трансформаторы) незаменимы, когда необходим недорогой, но при этом мощный и надежный сварочник. Также сварка на переменном токе отлично зарекомендовала себя при сварке металлов, на поверхности которых есть окисная пленка. Это, прежде всего, алюминий и нержавеющая сталь.Трансформаторы хорошо справляются и со сваркой загрязненных деталей, ели нет возможности их очистить и зашлифовать.

Также аппараты переменного тока легко переносят сварку в полевых условиях, неприхотливы к хранению и эксплуатации, могут варить даже самый толстый металл благодаря большому запасу по мощности.

Пара слов о сварочной дуге

Выше мы упомянули, что при сварке на переменном токе дуга горит нестабильно. Это действительно так, и эта проблема требует особого внимания, если вы начинающий сварщик. Когда мы говорим о нестабильности, мы имеем в виду, что дуга как бы «гуляет» при формировании шва. Она отклоняется от оси, и порой это даже заметно невооруженным глазом.

Также новичкам порой непросто поджечь дугу, поскольку аппарат переменного тока практически никак не способствует этому. Новички часто поджигают дугу неправильно, и во время сварки она может погаснуть из-за слишком сильного колебания.

Эти особенности отталкивают многих новичков от покупки трансформатора, поскольку они беспокоятся о качестве работ. Но мы считаем, что трансформатор — это наоборот отличный тренажер для оттачивания мастерства сварки. Если вы научитесь варить трансформатором, то сможете использовать любой другой аппарат без каких-либо трудностей. К тому же, трансформатор — это отличная основа для переделки и модификации. Его можно легко переделать в аппарат постоянного тока, если вы обладаете знаниями в области электротехники.

Трехфазный сварочный выпрямитель с регулировкой напряжения холостого хода секционированием витков обмоток трансформатора

Секционированием витков первичной обмотки трансформатора можно изменять его коэффициент трансформации и, соответственно, выходные параметры. Это простой, надежный и дешевый способ регулирования, но изменять параметры с его помощью можно только ступенчато. Причем, если не предусмотрено двухдиапазонного регулирования или если число ступеней регулирования мало, настройка напряжения будет довольно грубой. При этом способе регулирования также невозможно использовать дистанционное управление. Однако он часто используется в дешевых источниках питания для сварки МИГ/МАГ.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий