Что такое импульсный блок питания и где применяется

Чем отличается от трансформаторного блока питания

Блок-схемы трансформаторного и импульсного блоков питания

Как работает трансформаторный блок питания

В линейном блоке питания основное преобразование происходит при помощи трансформатора. Его первичная обмотка рассчитана под сетевое напряжение, вторичная обычно понижающая. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.

Следующий блок — выпрямитель, на котором синусоида сглаживается, превращается в пульсирующее напряжение. Этот блок выполнен на основе выпрямительных диодов. Диод может стоять один, может быть установлен диодный мост (мостовая схема). Разница между ними — в частоте импульсов, которые получаем на выходе. Дальше стоит стабилизатор и фильтр, придающие выходному напряжению нужный уровень и форму. На выходе имеем постоянное напряжение.

Самый простой линейный блок питания с двухполупериодным выпрямителем без стабилизации

Основной недостаток линейных источников питания — большие габариты. Они зависят от размеров трансформатора — чем выше требуется мощность, тем больше размеры блока питания. Нужен еще стабилизатор, который корректирует выходное напряжение, а это еще увеличивает габариты, снижает КПД. Зато это устройство не грозит помехами работающему рядом оборудованию.

Устройство импульсного блока питания и его принцип работы

В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».

Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность

Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц

Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.

Блок-схема ИИП с формами напряжения в ключевых точках

Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).

На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.

Достоинства и недостатки импульсных блоков питания

Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.

Размер тоже имеет значение

Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.

Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.

Что делает импульсный блок питания (ИБП)

В сети напряжение имеет синусоидальную форму. Для некоторых устройств это то что нужно, другим надо постоянное или импульсное напряжение. Вот этим и занимаются источники питания — преобразуют синусоидальную форму в нужную и, чаще всего, это постоянное напряжение. Независимо от формы выходного напряжения блок питания называют импульсным, потому что одна из стадий преобразования — формирование импульсов, которые затем выпрямляются.

Примеры импульсных блоков питания:

  • Зарядное устройство для телефона или смартфона;
  • Внешний блок питания ноутбука;
  • Блок питания компьютера;
  • Блок питания для светодиодной ленты.

Импульсный блок питания Robiton EN5000S. Предназначен для питания от источника переменного тока 100-240В приборов с напряжением 6,0 / 7,5 / 9,0 / 12,0 / 13,5 / 15 / 16В и максимальным входным током 5000 мА

Есть импульсные источники питания выдающие постоянное напряжение одного номинала. Наиболее распространенные на — 5 В, 12 В или  24 В. Есть устройства, выдающие сразу несколько уровней. Такие, например, стоят в компьютерах. На выходе они формируют сразу 5 В и 12 В. Есть — регулируемые ИИП, при помощи переключателей в них можно задавать выходные параметры (в определенных рамках). Импульсный блок питания может быть в виде отдельного устройства или являться частью какого-то более сложного прибора.

Путь преобразования синусоиды в постоянное напряжение при помощи источника импульсного питания

Если говорить об отдельных ИБП, то самыми распространенными, пожалуй, являются зарядные устройства для телефонов, ноутбуков. Они имеют компактные размеры, так как требуется небольшая мощность. Встроенный импульсный блок питания есть в телевизорах, компьютерах и другой сложной электронике, в некоторых бытовых приборах. Блоки питания бывают линейные (трансформаторные) или импульсные (инверторные).

Оба типа блоков питания преобразуют синусоиду в постоянный ток, но вот путь преобразования разный, да и результаты несколько отличаются. Импульсный блок питания отличается высокой стабильностью работы. Тем не менее трансформаторные источники еще в ходу. Почему? Стоит разобраться.

Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций

Правило №2: у качественных ИБП в конструкции блока должен работать надежный фильтр в/ч сигналов.

Важно понимать, что импульсы высокой частоты играют двоякую роль:

  1. в/ч помехи могут приходить из бытовой сети в блок питания;
  2. импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.

Причины появления помех в бытовой сети:

  • апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
  • работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
  • последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.

Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.

Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.

Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.

Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)

Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.

Работу дросселя эффективно дополняют емкостные сопротивления.

Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.

Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.

Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.

Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.

Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.

У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение

Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.

Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.

У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.

Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.

Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией

Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.

Схемотехника импульсных блоков питания

Природой предоставлено 14 базовых топологий реализации импульсных блоков питания. С присущими достоинствами, уникальными характеристиками. Некоторые подходят созданию маломощных блоков питания (ниже 200 Вт), другие лучшие качества проявляют при питании сетевым напряжением 230 вольт (50/60 Гц). И чтобы выбрать нужную топологию, сумейте представить свойства каждой. Исторически первыми называют три:

  • Buck – бак, олень, доллар.
  • Boost – ускорение.
  • Polarity inverter – инвертор полярности.

Три топологии относятся к линейным регуляторам. Тип приборов считается предшественником импульсных блоков питания, не включая достоинств. Напряжение подается через трансформатор, спрямляется, нарезается на силовом ключе. Работой регулятора заведует обратная связь, в задачи которой входит формирование сигнала ошибки. Тип приборов составлял многомиллиардный оборот в 60-е годы, мог лишь понижать напряжение, а общий провод потребителя замыкался с сетью питания.

Схема Buck топологии

Buck топология

Так появились «олени». Первоначально предназначенные для постоянного напряжения нарезали входной сигнал импульсами, затем пачки спрямлялись, фильтровались с получением средней мощности

Обратная связь контролировала скважность, частоту (широтно-импульсная модуляция). Аналогичное делается сегодня компьютерными блоками питания

Практически сразу были достигнуты значения плотности мощности 1 – 4 Вт на кубический дюйм (впоследствии до 50 Вт на кубический дюйм). Прелестно, что стало можно получать множество выходных напряжений, развязанных со входом.

Недостатком сочтем потери в момент переключения транзистора, напряжение меняет полярность, остается ниже нуля до следующего импульса. Указанная часть сигнала, минуя диод, замыкается на землю, не доходя фильтра. Обнаружено существование оптимальных частот переключения, при которых издержки минимизируются. Диапазон 25 – 50 кГц.

Схема Boost топологии

Boost топология

Топология именуется кольцевым дросселем, ставится вперед ключа. Удается повысить входное напряжение до нужного номинала. Схема работает следующим образом:

  1. В начальный момент времени транзистор открыт, дроссель запасается энергией источника напряжения через коллекторный, эмиттерный p-n-переходы, землю.
  2. Затем ключ запирается, стартует процесс зарядки конденсатора. Дроссель отдает энергию.
  3. В некоторый момент отрабатывает усилитель обратной связи, начинается питание нагрузки. Конденсатор неспособен отдать энергию в сторону силового ключа, мешает диод. Заряд забирает полезная нагрузка.
  4. Падение напряжения вызовет повторное срабатывание цепи обратной связи, начнется накопление энергии дросселем.

Polarity Inverter топология

Топология полярного инвертора похожа на предыдущую схему, дроссель расположен за ключом. Работает следующим образом:

  1. В начальный момент времени ключ открыт, положительной полуволной напряжения наполняет дроссель энергией. Далее энергия пройти бессильна – мешает диод.
  2. Транзистор закрывается, в дросселе возникает ЭДС, называемая паразитной. Направлена противоположно начальной, свободно проходит диод, подзаряжая конденсатор.
  3. Срабатывает схема обратной связи, широтно-импульсный модулятор вновь открывает транзистор. Начинается процесс разрядки конденсатора в нагрузку, дроссель вновь заполняется энергией.

Схема Polarity Inverter топологии

В этом случае наблюдаем параллельность процессов запасания/расходования энергии. Все три рассмотренные схемы демонстрируют следующие недостатки:

  1. Имеется связь по постоянному току между входом и выходом. Другими словами, отсутствует гальваническая развязка.
  2. Невозможно получить несколько номиналов напряжений из одной схемы.

Минусы устраняются двухтактной тяни-толкай (push-pull), запаздывающей (latter) топологиями. Обе используют чоппер с технологией опережения (forward). В первом случае используется дифференциальная пара транзисторов. Становится возможным использовать один ключ на половину периода. Для управления нужна специальная формирующая схема, попеременно раскачивающая эти качели, улучшаются условия отвода тепла. Нарезанное напряжение двухполярное, питает первичную обмотку трансформатора, вторичных много – сообразно требованиям потребителей.

В запаздывающей топологии один транзистор заменен диодом. Схема часто эксплуатируется маломощными блоками питания (до 200 Вт) с постоянным напряжением на выходе 60 – 200 В.

Основные неисправности и методы проверки импульсных блоков питания

Как включить и выставить определённый режим мультиметра каждый может разобраться сам, даже школьник. Перед началом проверки убедитесь в работоспособности сетевого кабеля или выключателя, которые можно определить визуально или с помощью мультиметра. Не забудьте при любой проверке разрядить электролитические конденсаторы. Они накапливают и удерживают довольно приличный заряд на протяжении определённого времени, даже после выключения всей системы.

  1. Для этого закоротите контакт любого электролита, а лучше пройдитесь по всей плате изолированным щупом (с номинальным сопротивлением несколько кОм и мощностью больше 0,5 Вт), который другим концом будет подсоединён к заземлению. Старайтесь заземлять только точечные контакты, не прикасаясь одновременно к двум, иначе можете испортить радиодетали. Иногда таким способом вы сможете убрать «коротыш». Это короткое замыкание в схеме, которое может возникнуть при выходе из строя некоторых элементов блока питания.
  2. Как уже говорилось выше все вздувшиеся и чёрные радиоэлементы нужно сразу заменить на подобные, но не спешите после этого сразу опробовать весь блок. Прозвоните соседние детали и при необходимости замените их.
  3. Прозвонить силовые и выпрямительные мосты (при необходимости выпаять), обычно они выполнены на диодах, которые проверяются омметром и имеют односторонний переход. Для проверки подключите щупы мультиметра ко входу и выходу диода (сначала чёрный щуп к одному контакту, а красный к другому, а затем меняя местами), вы должны убедиться, что он не пробит. То есть, вы должны увидеть определённое числовое показание мультиметра, когда подключите щупы в правильном направлении плюс и минус. Единица будет означать исправность перехода в обратном направлении (т. е. непробитый переход). Таким способом нужно проверить все сомнительные детали с диодными переходами.

Возможные причины выхода из строя импульсного блока питания и необходимая замена нерабочих радиоэлементов:

  1. При сгорании предохранителя весь блок обесточивается. Заменить перегоревший контакт очень просто. Используйте обычный проволочный волосок, который наматывается поверх предохранителя или припаивается непосредственно к его контактам. Необходимо учитывать толщину волоска, которая рассчитана на определённую силу тока. Иначе вы рискуете в последующем вывести из строя весь импульсный блок, если предохранитель не сработает.
  2. Если полностью отсутствует выходное напряжение, возможно, неисправен соответствующий конденсатор или дроссель, который нужно заменить или поменять обмотку. Для этого нужно размотать повреждённый провод и намотать новый с соответственным количеством витков и подходящим сечением. После чего самодельный дроссель впаивается на своё рабочее место.
  3. Проверить все диодные мосты и переходы. Как это сделать описано выше. Не забывайте при установке новых деталей производить самостоятельную, а главное, качественную пайку.

Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

Читать также: Инструменты для слесарной разметки

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций

Правило №2: у качественных ИБП в конструкции блока должен работать надежный фильтр в/ч сигналов.

Важно понимать, что импульсы высокой частоты играют двоякую роль:

  1. в/ч помехи могут приходить из бытовой сети в блок питания;
  2. импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.

Причины появления помех в бытовой сети:

  • апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
  • работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
  • последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.

Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.

Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.

Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.

Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)

Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.

Работу дросселя эффективно дополняют емкостные сопротивления.

Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.

Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.

Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.

Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.

Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.

У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение

Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.

Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.

У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.

Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.

Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией

Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.

Схема ИБП

Рассмотрим, как устроен не самый сложный импульсный блок питания в наиболее распространённой конфигурации:

  • помехоподавляющий фильтр;
  • диодный выпрямитель;
  • сглаживающий фильтр;
  • ШИП;
  • блок силовых ключевых транзисторов;
  • высокочастотный трансформатор;
  • выпрямители;
  • групповые/индивидуальные фильтры.

В зону ответственности помехоподавляющего фильтра входит функция фильтрация помех, источником появления которых является сам блок питания. Дело в том, что использование мощных полупроводниковых компонентов часто приводит к формированию кратковременных импульсов, наблюдаемых в обширном диапазоне частот. Чтобы снизить их влияние на выходной сигнал, применяются цепочки специальных проходных конденсаторов, служащих фильтром для подобных импульсов.

Назначение диодного выпрямителя – преобразование переменного напряжения на входе блока в постоянное на выходе. Возникающие паразитные пульсации сглаживает установленный долее по схеме фильтр.

Если устройство импульсного блока включает преобразователь постоянного напряжения, цепочка из выпрямителя и фильтра будет лишней, поскольку входной сигнал будет сглаживаться на участке помехоподавляющего фильтра.

Широтно-импульсный преобразователь (его ещё называют модулятором) – наиболее сложная часть устройства. Он выполняет несколько функций:

  • генерирует импульсы высокой частоты (от килогерца до сотен КГц);
  • на основании параметров сигнала обратной связи корректирует характеристики импульсной последовательности на выходе;
  • осуществляет защиту схемы от перегрузок.

С ШИМ импульсы подаются на ключевые транзисторы высокой мощности, чаще всего выполненные по мостовой/полумостовой схемам. Выводы ключевых транзисторов поступают на первичную обмотку трансформаторного блока. В качестве элементной базы используются транзисторы типа MOSFET или IGBT, отличающиеся от биполярных аналогов незначительным снижение напряжения на участке перехода, а также более высоким быстродействием. Это позволило снизить параметр рассеиваемой мощности при тех же габаритах.

Что касается принципа работы импульсного трансформатора, то он использует тот же способ преобразования, что и классические трансформаторные БП

Единственное, но важное отличие – он работает на гораздо более высоких частотах. Это и позволило при той же выходной мощности заметно уменьшить массу и размеры блока

С вторичной обмотки трансформатора (напоминаем, их может быть несколько) импульс поступает на выходные выпрямители. В отличие от аналога на входе блока, здесь диоды должны обеспечивать работу на высоких частотах. Лучше всего с такой работой справляются диоды Шоттки. Они устроены так, что обеспечивают малую ёмкость p-n перехода и, соответственно, небольшое падение напряжения при высоком показателе рабочей частоты.

Последний элемент схемы, выходной фильтр, сглаживает пульсации поступающего на вход выпрямленного напряжения. Поскольку это высокочастотные импульсы, здесь отпадает необходимость в применении конденсаторов и катушек большой мощности.

КАК РАБОТАЕТ ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ

Принцип работы импульсного блока питания заключается в ряде последовательных преобразований питающего напряжения:

  • выпрямление входного напряжения;
  • инвертирование, то есть, генерация сигнала с частотой от десятков до сотен килогерц;
  • трансформация высокочастотных импульсов до требуемого уровня;
  • выпрямление и фильтрация полученного напряжения.

Цепочка преобразований в описании принципа работы импульсного блока питания выглядит достаточно громоздкой и даже лишённой смысла. Однако нужно учесть что в данной схеме преобразуется напряжение, частота которого в отдельных моделях составляет 200 кГц (а не 50 Гц, как в трансформаторных источниках питания).

Трансформаторы, которые работают на высоких частотах, называют импульсными. Обычно они используют магнитопровод тороидальной формы (в виде бублика) небольшого размера. Это позволило уменьшить вес и габариты блока той же мощности более чем на порядок.

Тор обычно изготавливается штамповкой из пермаллоя — сплава, состоящего из железа и никеля, магнитопровод же низкочастотного трансформатора набирается из тонких пластин электротехнической стали.

Принцип инверторного преобразования дает возможность создать сверхминиатюрные аппараты электродуговой сварки, работа которых возможна от обычной бытовой розетки, способные сваривать металл до 10 мм толщиной, легко переносимые в небольшой сумке с плечевым ремнём.

Базовые принципы, на которых основано устройство импульсного блока питания не новы, всё находится в рамках давно устоявшихся представлений об электричестве. Что же мешало создать их раньше? Причина в технологии.

Главными электронными компонентами инверторного преобразователя импульсного блока являются элементы схемы, способные работать с высокими частотой и напряжением и большими токовыми нагрузками.

Раньше, компонентов, отвечающих этим требованиям, просто не существовало. Настоящий прорыв в развитии и распространении инверторных технологий произошёл после того, как мировым производителям электроники удалось наладить массовое производство мощных IGBT – транзисторов, а также полевых транзисторов по технологии MOSFET.

Они отличаются очень малым значением тока управления, что обеспечивает высокий КПД блока.

Кроме мощных транзисторных ключей, инвертор содержит времязадающие цепочки, генерирующие высокочастотные сигналы управления транзисторами.

Применение в этом качестве цифровых микросхем ШИМ – контроллеров позволяет ещё более миниатюризировать электронную часть. Контроллер широтно импульсного модулирования формирует прямоугольные периодические импульсы. В целом схемотехнически импульсные блоки питания относительно просты.

Стабилизация выходного напряжения осуществляется за счёт обратной связи этого параметра с задающими цепями ШИМ – контроллера

Принцип работы обратной связи — при отклонении уровня контролируемого параметра на выходе от номинального значения происходит изменение скважности импульсов, формируемых контроллером.. Скважностью импульсов называется безразмерная величина, равная отношению периода чередования этих импульсов к их длительности

Таким образом, скважность изменяется от 0 до 1.

Скважностью импульсов называется безразмерная величина, равная отношению периода чередования этих импульсов к их длительности. Таким образом, скважность изменяется от 0 до 1.. Увеличение уровня выходного напряжения вызывает снижение скважности и наоборот, то есть, имеет место отрицательная обратная связь

Скважность, задаваемая контроллером, определяет режим работы ключевых транзисторов. Чем выше значение скважности, тем большую часть периода транзистор открыт, и тем больше среднее значение напряжение за период.

Увеличение уровня выходного напряжения вызывает снижение скважности и наоборот, то есть, имеет место отрицательная обратная связь. Скважность, задаваемая контроллером, определяет режим работы ключевых транзисторов

Чем выше значение скважности, тем большую часть периода транзистор открыт, и тем больше среднее значение напряжение за период.

Описанный принцип стабилизации обеспечивает работу блока питания в очень широком диапазоне изменения питающего напряжения. Резюмируя сказанное, преимущества импульсных блоков питания таковы:

  • малые габариты и вес по сравнению с трансформаторными источниками питания;
  • схемотехническая простота, обусловленная применением интегральных электронных компонентов;
  • возможность работы в широком диапазоне изменения значений входного напряжения.

Схема линейного блока питания

Основные задачи любого промышленного БП заключаются в снижении переменного напряжения 220 В (230 В) до требуемой величины, затем его выпрямление, сглаживание и стабилизация.

Поэтому любая схема линейного бока питания обязательно содержат как минимум следующие элементы: трансформатор, выпрямитель, фильтр, узел стабилизации. Назначение каждого элемента было более полно рассказано здесь.

Теперь, глядя на составляющие функциональной схемы линейного БП, давайте рассуждать, какие элементы приводят к росту его массы и веса. В качестве выпрямителя чаще служит диодный мост. Снизить его размеров не даст особого эффекта. Да и реализовать этот будет затруднительно.

Узел стабилизации может быть реализован по-разному. Поэтому на нем мы тоже сэкономить мало что сможем. Остаются только два элемента: фильтр и трансформатор. Фильтр представляет собой электролитический конденсатор большой емкости. Но изменение его параметров, как мы увидим далее, не позволит получить сколь-нибудь ощутимый выигрыш. Остается исследовать возможности способы минимизации трансформатора.

Основная задача его заключается в передаче мощности со стороны источника высокого на сторону низкого напряжения. При этом необходимо обеспечить гальваническую развязку высоковольтных с низковольтными цепями. Гальваническая развязка необходима для преимущественного большинства устройств по условиям безопасности, как персонала, так и низковольтного оборудования. А трансформатор, как никакой другой элемент выполняет эти и другие условия. При этом он имеет максимальный коэффициент полезного действия, достигающий 99 %. По этой причине ему до сих пор не могут найти альтернативу, за что приходится расплачиваться повышенной массой и размерами в целом БП.

Самостоятельная и качественная пайка

  1. Предметы первой необходимости при ремонте это паяльник, канифоль и «отсос». Отсос – механический (или электрический) прибор, который применяется во время выпаивания элементов и служит для предотвращения перегрева во время пайки. Принцип его работы заключается в резком втягивании в себя расплавленного олова, которое при сильном нагреве может вывести радиоэлемент из строя. Особенно это касается интегральных микросхем, которые очень чувствительны к таким температурным скачкам. Отсосы бывают механические и электрические. Хорошо и правильно подобранный по мощности паяльник в сочетании с отсосом являются отличным тандемом для качественной пайки.
  2. Для выпаивания и обратной установки необходимых радиоэлементов можно пользоваться не только паяльником и отсосом, но и термовоздушной паяльной станцией. Её несложно соорудить и самому. Обычный вентилятор можно использовать в качестве нагнетателя, а спираль буде нагревающим элементом. Схема на тиристоре будет оптимальным вариантом для регулировки температуры. Такая станция ещё удобна и для прогрева всех подозрительных и некачественных паек, которые могут стать причиной появления микротрещин, и как результат – плохого контакта.

Правильная и качественная пайка является одним из основополагающих навыков, которым должен овладеть любой начинающий радиолюбитель. От этого зависит конечный результат всего ремонта и срок дальнейшей эксплуатации отремонтированного прибора.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий

Adblock
detector