Химический источник тока непосредственно преобразующий химическую энергию в электрическую энергию

Примеры действия электрического тока

Как известно, увидеть движущиеся заряды (электроны, ионы) мы не можем, так как они очень малы. Но как тогда можно обнаружить электрический ток?

ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО ТОКА

При протекании электрического тока могут происходить различные явления, которые называются действиями электрического тока.

ТЕПЛОВОЕ ДЕЙСТВИЕ ТОКА

Электрический ток, протекая по проводам, вызывает их нагревание.

Присоединим к полюсам источника тока железную или никелевую проволоку. Замкнув ключ, можно наблюдать, как проволока провиснет, т. е. она нагреется и удлинится. Таким образом её можно даже раскалить докрасна.

Именно на тепловом действии тока основана работа различных бытовых нагревательных приборов, таких, как электрический чайник, электрические плитки, утюги и др. Нить лампочки раскаляется и начинает светиться.

ХИМИЧЕСКОЕ ДЕЙСТВИЕ ТОКА

Как показывает опыт, на электродах, опущенных в раствор электролитов, происходит выделение чистого вещества. Этот процесс называется электролизом. Например, пропуская ток через раствор медного купороса, можно выделить чистую медь.

Электрический ток в металлах не вызывает никаких химических изменений. Химическое действие тока происходит только в растворах и расплавах электролитов.

МАГНИТНОЕ ДЕЙСТВИЕ ТОКА

На большой железный гвоздь намотаем тонкий изолированный провод. Концы провода через ключ соединим с источником тока.

Если замкнуть ключ, то гвоздь намагнитится и будет притягивать к себе гвоздики, железные стружки, опилки. С прекращением тока в проводнике магнитные свойства гвоздя исчезнут.

Явление взаимодействия катушки с током и магнита лежит в основе работы прибора, называемого гальванометром. С помощью гальванометра можно судить о наличии тока и его направлении. Стрелка прибора связана с подвижной катушкой. Когда в катушке появляется электрический ток, стрелка отклоняется.

МЕХАНИЧЕСКОЕ ДЕЙСТВИЕ ТОКА

Металлическую рамку соединим с источником тока. При пропускании электрического тока через рамку она остаётся висеть неподвижно. Но если эту рамку поместить между полюсами подковообразного магнита, то она начнёт поворачиваться.

В этом опыте мы наблюдали механическое действие электрического тока, которое заключается в том, что электрический ток при протекании по рамке, помещённой между полюсами магнита, вызывает её вращение.

ДЕЙСТВИЕ ТОКА НА ЧЕЛОВЕКА

Тело человека является проводником электрического тока, который, проходя через организм человека, может производить тепловое, химическое, механическое, биологическое и другое воздействие.

При тепловом действии происходит перегрев и функциональное расстройство органов на пути прохождения тока, возникают ожоги.

Химическое действие тока выражается в электролизе жидкости в тканях организма, в том числе крови, и нарушении её физико-химического состава.

Механическое действие связано с сильным сокращением мышц, вплоть до их разрыва.

Биологическое действие тока выражается в раздражении и перевозбуждении нервной системы.

Действия электрического тока на организм человека используют в медицине.

Дефибрилляторы используют для восстановления ритма сердечной деятельности путём воздействия на организм кратковременных высоковольтных электрических разрядов. При радикулите, невралгии и некоторых других заболеваниях применяют гальванизацию: через тело человека пропускают слабый электрический ток, который оказывает болеутоляющее действие и улучшает кровообращение.

Вы смотрели Конспект по физике для 8 класса «Примеры действия электрического тока».

Источник электрического тока

Самым простым и общеизвестным источником электрического тока является аккумулятор, в уменьшенном виде аккумуляторная или простая батарейка. Это источники постоянного тока. У этих источников есть плюса.

Есть положительный полюс, который обозначается знаком плюс (+). И отрицательный полюс который обозначается знаком минус (-).

Если полюса соединить с потребителем электрического тока, например лампочкой с помощью проводника (проводов), то  электрический ток начнет движение в определенном направлении (под действием электрического поля) и лампочка загорится.

Ток течет от плюса к минусу, хотя обычно принято говорить что наоборот

Но, на начальном этапе это не столь важно

Какие бывают источники электрического тока, выделим три основных:

  1. Гальванический источник – батарейка или аккумулятор.
  2. Термический источник или термоэлемент, в таком элементе электрический ток появляется при повышении температуры.
  3. Фотоэлемент – электричество появляется при воздействии излучения.

Гальванический элемент

Выше я привел обозначение гальванического элемента на схеме. Гальванический элемент это такое устройство, в котором происходят химические реакции. При этих реакциях выделяется энергия, которая превращается в электрическую энергию.

Гальваническими элементами можно считать батарейку и аккумулятор. Суть этих элементов такова.

Есть два металлических элемента, один из них анод (например, цинк) и катод (например, медь). Эти элементы помещены в определенную среду (электролит). Причем не важен форм-фактор этих элементов. Это может быть цинковая пластина и угольный стрежень, или две пластины, не суть.

Изображение из Википедии https://ru.wikipedia.org/

Катод и анод имеют разные заряды, положительный и отрицательный. В результате разных зарядов в электролите начинается движение электронов, то есть появляется электрическое поле, благодаря которому образуется электрический ток.

Со временем происходящие в гальваническом элементе реакции ослабевают, и поэтому приходится покупать новую батарейку или заряжать автомобильный (например) аккумулятор.

Остальные элементы (источники) в данной статье я не рассматриваю. Надеюсь что в целом все понятно. Перейдем к проводнику.

Проводник электрического тока

Проводник это неотъемлемая часть электрической цепи. Он служит для передачи электрического тока от источника к потребителю (приемнику).

Как вы уже знаете проводник обычно это металл. Провода электрического тока в наших квартирах это, обычно, медные или алюминиевые проводники. Как же происходит движение электричества в металле?

Металлы в твердом состоянии имеют кристаллическую решетку. В этой решетке расположены положительно заряженные ионы, а между ними движутся отрицательно заряженные электроны. Отрицательный заряд электронов (всех) равен положительному заряду электронов (всех). Поэтому в своем обычном состоянии провода не баются током.

Кристаллическая решетка металла

Электроны в металле, как и во многих других средах, движутся беспорядочно. Но если мы соединяем источник и потребитель с помощью провода, то от источника на металл начинает действовать электрическое поле и электроны начинают двигаться быстрее и в определенном направлении.

Некоторое беспорядочное движение электронов присутствует,  но это движение можно сравнить с перемещением частиц воздуха в автомобиле, который едет с большой скоростью.

При этом электрический ток происходит по всему проводу (проводнику) который подключен к источнику электрического тока.

Потребитель электрического тока

Приемник или потребитель электрического тока это то, что потребляет ток для какой-либо работы.

Например, лампочка потребляет электрический ток для освещения, обогреватель для повышения окружающей температуры, электрооборудование для выполнения различной работы.

Без потребителя в цепи произойдет замыкание, о нем я расскажу в следующих материалах настоящего самоучителя электрика.

На потребителях не будем останавливаться подробно, тут все в целом должно быть понятно – все то, что для выполнения своей работы нуждается в электрическом токе, можно называть потребителем.

Современный чайник является хорошим примером потребителя электрического тока.

Замыкатель электрической цепи

Замыкателем электрического тока выступает любое устройство, которое замыкает и размыкает электрическую цепь.

Что бы загорелась лампочка нужно щелкнуть выключателем. Что бы чайник начал нагревать воду воду нужно щелкнуть выключателем. Все это замыкатели электрической цепи.

Составные части электрических цепей

Как известно, для того, чтобы электрический ток в проводниках существовал длительное время необходимо, во-первых, существование разности потенциалов или напряжения, а во-вторых, восполнение необходимого количества разноимённых зарядов для возникновения этой разности потенциалов. Данным условиям соответствует некоторая совокупность элементов называемая электрической цепью.

Таким образом, электрической цепью называется совокупность устройств и объектов, которые образуют путь для электрического тока и электромагнитные процессы, в которых могут быть описаны с помощью понятий ЭДС, напряжения и электрического тока. Кроме того, для протекания электрического тока необходима замкнутая электрическая цепь. В общем случае электрическая цепь состоит из источника электрической энергии, приемника электрической энергии, соединительных проводов, а также  вспомогательных элементов, выполняющих разнообразные функции.

Источником электрической энергии является устройство, которое выполняет преобразование неэлектрической энергии в электрическую. Например, аккумуляторы осуществляют преобразование энергии химических реакций в электрическую энергию, а генераторы – преобразование механической энергии. Таким образом, как известно из предыдущей статьи источники энергии называют также источниками ЭДС.

Приёмником электрической энергии, также называемые нагрузками является устройство, в котором выполняется действие противоположное источнику энергии, то есть электрическая энергия преобразуется в неэлектрическую. Например, в лампочке электрическая энергия преобразуется в световую и тепловую энергию, а в электродвигателе – в механическую энергию.

К вспомогательным устройствам относятся различные коммутирующие, распределительные и измерительные приборы и объекты.

Электрические цепи изображают на чертежах в виде принципиальных электрических схем, где каждому элементу электрической цепи соответствует свой графический элемент. Принципиальные схемы показывают назначение каждого элемента цепи, а также его взаимодействие с остальными элементами, однако при расчётах они не очень удобны. Поэтому при расчётах пользуются так называемыми схемами замещения, которые также как и принципиальные схемы изображаются с помощью графических элементов, однако элементы схем замещения выбираются так, чтобы с необходимым приближением описать работу электрической цепи. Пример изображения принципиальных электрических схем и схем замещения показано ниже

Принципиальная схема (слева) и схема её замещения (справа).

Схемы замещения состоят из следующих элементов: контур, ветвь и узел. Ветвь – это один элемент либо последовательное соединение нескольких элементов. Узел – место соединения трёх и более ветвей. Контур – замкнутый путь, проходящий по ветвям так, чтобы ни один узел и ни одна ветвь не встречались больше одного раза.

Таким образом, зная параметры всех элементов схемы замещения, возможно при помощи законов электротехники определить электрическое состояние всей электрической цепи, то есть рассчитать режим её работы.

ИСТОЧНИКИ ПЕРВИЧНОГО ПИТАНИЯ

Как было сказано, к первичным источникам относятся устройства, преобразующие различные виды энергии в электроэнергию. Это может быть химическая, механическая энергия, световая, тепловая и энергия атомного распада.

Основные виды первичных источников:

  • гидроэлектростанции – преобразуют в электроэнергию гравитационную энергию воды;
  • химические источники (аккумуляторы, топливные и гальванические элементы) – переводят химическую энергию в электрическую;
  • дизель-генераторы – химическая энергия преобразуется сначала в механическую, потом в электрическую;
  • солнечные батареи – преобразуют энергию солнечного света в электрическую на основе физического закона фотоэффекта;
  • ветряные генераторы – преобразуют кинетическую энергию воздушных частиц;
  • термоэлектрические преобразователи – преобразуют тепловую энергию в электрическую.

Химические источники обычно используются в маломощных устройствах и как резервные источники. Работа топливных элементов основана на электрическом окислении топлива. В термоэлектрических устройствах электрический потенциал создает разница температур.

Что такое источник тока

Чтобы поддерживать ток в электрических цепях долгое время необходимо удерживать стабильное значение электрического поля. Именно в этом заключается роль источников электрического тока.

Во всех источниках происходит работа по разделению отрицательно и положительно заряженных частиц. Частицы с зарядами разных знаков скапливаются у полюсов источника тока (“плюса” и “минуса”), которые обозначены специальными клеммами. Между полюсами возникает разность потенциалов и электрическое поле, которое после подключения источника проводниками к электрической цепи, порождает электрический ток.

Первый вариант работающей батареи сконструировал итальянский ученый Алессандро Вольта в 1798 г. А в 1859 г. французский физик Гастон Планте свинцово-кислотные клетки — ключевой элемент аккумулятора для автомобиля. Кстати, автомобиль появился только через 26 лет.

Таким образом, внутри источника тока совершается работа по разделению электрических зарядов, без использования силового действия электрического поля. Силы, совершающие работу по сортировке (разделению) зарядов, по определению называются сторонними силами. Перечислим некоторые примеры сторонних сил:

Механические силы

Простейший пример — это электрофорная машина, диски которой приводятся во вращение рукой. Современные генераторы электрического тока преобразуют механическую энергию вращения вала от двигателей внутреннего сгорания или от паровых и гидротурбин;

Рис. 1. Электрофорная машина:.

Тепловое воздействие

Такие источники называют термоэлементами. Примером может служить так называемая термопара, то есть когда берутся две проволоки из разных металлов, делаются два спая, один из которых нагревают, а другой охлаждают. В результате появляется напряжение. Величина напряжения таких источников мала, но в они используются в качестве термодатчиков. Геотермальные станции, работающие в местах, где имеются природные источники горячей воды, также относятся к этому виду источников. ;

Фотоэффект

Энергия фотонов света переходит в электрическую энергию, когда твердое тело обладает свойствами полупроводника. К таким веществам относятся, например, кремний, германий, арсенид галлия. Солнечные батареи, которые были в первую очередь разработаны для космических кораблей, сейчас используются повсеместно;

Химические реакции

Набор определенных химических веществ может вступать в реакции, в результате которых внутренняя энергия переходит в электрическую. Такие источники тока называются гальваническими элементами в честь итальянского ученого Луиджи Гальвани. Батарейки для современных гаджетов, телевизионных пультов, все это — гальванические элементы. Батарейки используются один раз, так как после окончания химического процесса электроды теряют способность к накоплению зарядов;

Рис. 2. Гальванический элемент:.

Аккумуляторы

Данные источники тока выделены в отдельный класс, хотя механизм получения электрической энергии у них тоже основан на химических реакциях. В этих источниках электроды не расходуются. После подзарядки от электрической сети, источники снова возобновляют механизм химического воспроизводства электрической энергии.

Рис. 3. Примеры аккумуляторов:.

Виды источников электрического тока

Существуют следующие виды источников электрического тока:

  • механические;
  • тепловые;
  • световые;
  • химические.

Механические источники

В этих источниках происходит преобразование механической энергии в электрическую. Преобразование осуществляется в специальных устройствах – генераторах. Основными генераторами являются турбогенераторы, где электрическая машина приводится в действие газовым или паровым потоком, и гидрогенераторы, преобразующие энергию падающей воды в электричество. Большая часть электроэнергии на Земле производится именно механическими преобразователями.

Тепловые источники

Здесь преобразуется в электричество тепловая энергия. Возникновение электрического тока обусловлено разностью температур двух пар контактирующих металлов или полупроводников — термопар. В этом случае заряженные частицы переносятся от нагретого участка к холодному. Величина тока зависит напрямую от разности температур: чем больше эта разность, тем больше электрический ток. Термопары на основе полупроводников дают термоэдс в 1000 раз больше, чем биметаллические, поэтому из них можно изготавливать источники тока. Металлические термопары используют лишь для измерения температуры.

В настоящее время разработаны новые элементы на основе преобразования тепла, выделяющегося при естественном распаде радиоактивных изотопов. Такие элементы получили название радиоизотопный термоэлектрический генератор. В космических аппаратах хорошо себя зарекомендовал генератор, где применяется изотоп плутоний-238. Он даёт мощность 470 Вт при напряжении 30 В. Так как период полураспада этого изотопа 87,7 года, то срок службы генератора очень большой. Преобразователем тепла в электричество служит биметаллическая термопара.

Классификация видов энергии

Люди используют ресурсы разных видов: электричество в своих домах, добываемое путем сжигания угля, ядерной реакции или ГЭС на реке. Таким образом, уголь, ядерная и гидро называются источником. Когда люди заполняют топливный бак бензином источником может быть нефть или даже выращивание и переработка зерна.

Источники энергии делятся на две группы:

  • Возобновляемые
  • Невозобновляемые

Возобновляемые и невозобновляемые источники можно использовать в качестве первичных для получения пользы, такого как тепло или использовать для производства вторичных энергетических источников, таких, как электричество.

Когда люди используют электричество в своих домах, электроэнергия вероятно создается сжиганием угля или природного газа, ядерной реакции или ГЭС на реке, или из нескольких источников. Люди используют для топлива своих автомобилей сырую нефть (невозобновляемая), но могут и биотопливо (возобновляемая) как этанол, который производится из переработанной кукурузы

Возобновляемые

Есть пять основных возобновляемых источников энергии:

  • Солнечная
  • Геотермальное тепло внутри Земли
  • Энергия ветра
  • Биомасса из растений
  • Гидроэнергетика из проточной воды

Биомасса, которая включает древесину, биотопливо и отходы биомассы, является крупнейшим источником возобновляемой энергии, на которую приходится около половины всех возобновляемых и около 5% от общего объема потребления.

Невозобновляемые

Большая часть ресурсов, потребляемых в настоящее время из невозобновляемых источников:

  • Нефтепродукты
  • Углеводородный сжиженный газ
  • Природный газ
  • Уголь
  • Ядерная энергия

Сырая нефть, природный газ и уголь представляют ископаемые виды топлива, поскольку они были сформированы в течение миллионов лет под действием Солнца, тепла от ядра земли и давления почвы на остатки (или окаменелости) из отмерших растений и существ как микроскопическая диатомия. Большинство нефтяных продуктов, потребляемых в мире изготовлены из сырой нефти, но нефтяные жидкости также могут быть сделаны из природного газа и угля.

Ядерная энергетика работает больше на уране, источнике невозобновляемого топлива, чьи атомы делятся (с помощью процесса, называемого ядерным делением) для создания тепла и, в конечном счете, электричества.

Основным видом энергии, потребляемой во многих странах являются нефтепродукты, природный газ, уголь, ядерное и возобновляемое топливо.

Основными пользователями этих запасов являются жилые и коммерческие здания, промышленность, транспорт и электроэнергетика. Характер использования топлива широко варьируется в зависимости от системы применения. Например, нефть обеспечивает 92% топлива, используемого для транспортировки, но обеспечивает лишь около 1% ресурсов, используемых для выработки электроэнергии. Понимание взаимосвязей между различными видами энергии и её использование дает представление о многих важных вопросах энергетики.

Первичная энергия

Первичная энергия как вид включает в себя нефть, природный газ, уголь, ядерная энергия и возобновляемые источники энергии.

Электричество является вторичным источником, который создается с помощью этих первичных форм. Например, уголь является первичным источником, который сжигается на электростанциях для выработки электроэнергии, которая является вторичным источником.

Первичные виды энергии обычно измеряются в различных единицах, например, баррелях нефти, кубометрах газа, тоннах угля. Также используется общая единица измерения британская тепловая единица, или БТЕ, для измерения содержания для каждого типа.

Измерение

1 Гкал/час = 1,163 МВт 1 Вт = 859.8 кал/час 1 Вт = 3.412 BTU/час

BTU – британская тепловая единица (БТЕ) Россия потребляет квадриллионы БТЕ.

В терминах физических величин, один квадриллион составляет примерно 172 миллиона баррелей нефти, 51 млн. тонн угля или 1 трлн. куб. м газа.

На нефть приходится наибольшая доля в потреблении первичной энергии, затем природный газ, уголь, атомные электростанции и возобновляемые источники энергии (включая гидроэнергию, ветра, биомассы, геотермальные, солнечные).

Фотоэлектрические источники

Атомы некоторых веществ под действием видимого света способны терять электроны. Например, селен, кремний, оксиды цинка, меди, висмута. На основе этих и, некоторых других веществ создают источники, генерирующие электрический ток под действием (рис. 6) света.


Рис. 6. Некоторые оксиды, а, так же, чистые вещества, при освещении видимым светом могут отдавать электроны

Эти источники используют фотоэлектрический эффект (сокращенно — фотоэффект) (ссылка). В них энергия света преобразуется в электрическую.

Существует два вида фотоэффекта – внутренний, который используется в полупроводниках (ссылка) и внешний, используемый в вакуумных фотоэлементах на основе различных металлов.

Вакуумные фотоэлементы

В вакуумном фотоэлементе свет попадает на пластинку металла и выбивает электроны с ее поверхности. Такую пластинку называют катодом.

Выбитые электроны улавливаются другим электродом. Его называют анодом и обычно выполняют в виде металлической сетки.

Оба электрода находятся в стеклянном баллоне из которого удалили воздух. Дело в том, что молекулы воздуха могли бы помешать движению электронов, вылетевших из пластинки. Чтобы этого не происходило, воздух из баллона откачивают (рис. 7).


Рис. 7. Металлический катод и сетчатый анод в прозрачном стеклянном баллоне образуют вакуумный фотоэлемент

Таким образом, под воздействием света между катодом и анодом в вакууме возникает поток заряженных частиц. Они движутся направлено от катода к аноду. Значит, в фотоэлементе под действием света возникает электрический ток. Так световая энергия переходит в электрическую.

Солнечные батареи

Еще одним источником тока, в котором ток возникает за счет световой энергии, являются, так называемые, солнечные батареи. Их изготавливают из полупроводниковых пластин (рис. 8).


Рис. 8. Полупроводники способны преобразовывать энергию света в электрическую, поэтому, из них изготавливают солнечные батареи

Падающий свет из полупроводника электроны не выбивает. А вызывает переход электронов в такое состояние, в котором у них появляется дополнительная энергия и они могут свободно передвигаться по полупроводнику, создавая электрический ток.

Вторичный химический источник — ток

Вторичные химические источники тока допускают многократное их использование — аккумуляторы. Анод аккумулятора при разрядке служит катодом при зарядке. Наиболее распространены свинцовый ( кислотный) и железо-никелевый ( щелочной) аккумуляторы.

Вторичные химические источники тока, действие которых основано на использовании обратимых электрохимических систем. Под обратимыми электрохимическими системами понимают такие, в которых вещества, образовавшиеся в процессе разряда, могут быть превращены в первоначальные активные вещества.

Вторичные химические источники тока допускают многократное их использование — это аккумуляторы. Анод аккумулятора при разрядке служит катодом при зарядке.

Распространяется на первичные и вторичные химические источники тока. Устанавливает требования безопасности к конструкции источников тока.

Противоэлемент — это вторичный химический источник тока, практически не имеющий полезной емкости и используемый для встречного включения в цепь аккумуляторной батареи с целью регулирования ее напряжения.

Настоящий стандарт распространяется на первичные и вторичные химические источники тока.

Стартерные свинцовые аккумуляторные батареи являются вторичными химическими источниками тока. Заложенные в них активные вещества используются многократно.

Свинцовые аккумуляторы пользуются наибольшим спросом среди вторичных химических источников тока. Многообразие их электрических и эксплуатационных параметров в зависимости от назначения обеспечивается прежде всего различием технологии и конструкции электродных пластин. Наибольшее распространение получили стартерные аккумуляторы с пастиро-ванными пластинами, которые изучаются в предлагаемой лабораторной работе.

Группу щелочных аккумуляторов с окисно-никелевым электродом составляют вторичные химические источники тока трех систем: никель-железный ( сокращенно HJK), никель-кадмиевый ( сокращенно НК) и никель-цинковый. Последний обладает рядом существенных недостатков и прежде всего — малым сроком службы ( меньше 200 циклов) и большим саморазрядом ( до 90 % за месяц), поэтому в настоящее время его не применяют. Однако высокая удельная энергия никель-цинкового аккумулятора, достигающая 60 Вт — ч / кг, дает основания считать его перспективным в будущем.

Кислотные свинцовые аккумуляторы являются наиболее распространенными среди вторичных химических источников тока. Разнообразие их электрических и эксплуатационных параметров в зависимости от назначения обеспечивается прежде всего различием технологии и конструкции электродных пластин.

Из сказанного следует, что один и тот же электрод вторичного химического источника тока может являться и анодом и катодом в зависимости от того, подвергается ли источник заряду или разряду. Поэтому, чтобы правильно применять при рассмотрении вторичных ХИТ термины анод и катод, необходимо знать природу процессов, протекающих на данном электроде при заряде и разряде источника тока, учитывая при этом, что процессу окисления отвечает термин анод, а процессу восстановления — термин катод.

В отличие от простых ( первичных) гальванических элементов ( см. 8.4) аккумуляторы являются вторичными химическими источниками тока.

Пропускание электрического тока через электролитическую ячейку вызывает в ней определенные изменения. Если протекающие электрохимические поцессы обратимы, то можно вновь получить электрическую работу за счет накопленной химической энергии. Такие обратимые элементы называются аккумуляторами, или вторичными химическими источниками тока.

Пропускание электрического тока через электролитическую ячейку вызывает в ней определенные изменения. Если протекающие электрохимические процессы обратимы, то можно вновь получить электрическую работу за счет накопленной химической энергии. Такие обратимые элементы называются аккумуляторами, или вторичными химическими источниками тока.

Отечественной промышленностью выпускается обширный ассортимент малогабаритных источников питания, которые могут использоваться в переносной аппаратуре. Герметические дисковые кадмиево-никелевые аккумуляторы и батареи типа Д-006; Д-01; Д-02; 7Д — 0.1, применяющиеся в приборах широкого потребления, имеют небольшие габариты и вес, однако ограниченный температурный диапазон ( от 5 до 35 С), при котором техническими условиями гарантируется их работоспособность, недостаточен для полевой аппаратуры. Серебряно-цинковые аккумуляторы по своим характеристикам превосходят все вторичные химические источники тока.

Соединение источников электрической энергии.

В электроэнергетике встречаются такие случаи, когда источников электрической энергии несколько, которые включены и питают одну электрическую цепь. В зависимости от способа соединения источников, электрическая энергия ведет себя по-разному. Перед тем как углубляться в подробности следует сказать, что источники электрической энергии соединяют двумя способами — последовательно и параллельно.

Эти виды соединений я уже рассматривал при соединении конденсаторов и резисторов.

Давайте рассмотрим эти способы соединения на примере. В качестве источника электрической энергии возьмем три обычных батарейки напряжением в 1.5 вольт каждая. Также нам понадобится вольтметр и соединительные провода.

последовательное соединение источников электрической энергии

Соединив батарейка последовательно, как показано на схеме, можно будит увидеть, что вольтметр покажет напряжение гораздо большее чем у одной батарейки, а именно 4.5 вольт. Так при последовательном соединении источников электрической энергии, напряжение всех источников, входящих в цепь складывается. Стоит отметить, что суммарная емкость и мощность батареек равняется показателям одной батарейки.


параллельное соединение источников электрической энергии

Если же соединять эти же батарейки параллельно, как на схеме выше, мы увидим, что напряжение цепи с тремя параллельно соединенными батарейками равняется напряжению одной батарейки. Но мощность и емкость этой цепи источников увеличилось в несколько раз, а именно в количество соединенных источников, в данном случаи в три раза, при условии, что мощность и ёмкости батареек одинаковы.

В электроэнергетике кроме батареек последовательно или параллельно могут соединять все источники электроэнергии. Но для каждого вида источника существуют определенные условия, такие как: напряжение всех соединяемых источников должно быть одинаково, как и мощность, во избежание возникновения уравнительных токов, для соединения трансформаторов необходимо также, чтобы коэффициенты трансформации были также равны.

Источники электрического тока, изобретение электромашины

Источники питания 24 и 12 Вольт

Выработка электричества с помощью генераторов – основное направление в производстве электроэнергии. Механические источники поделились на два вида генераторов:

  • машины, вырабатывающие постоянный ток;
  • генераторы, производящие переменный ток.

Источники переменного тока и постоянного – это генераторы, которые превращают механическую энергию вращения в электрическую. Заявление Эмиля Ленца, русского учёного, в 1833 году послужило толчком для работ над созданием генераторов. Ленц объявил о возможной взаимности магнитоэлектрических явлений. Это означало, что двигатели постоянного и переменного тока могли не только вращаться при подаче напряжения соответствующей природы, но и при вращении начинать вырабатывать это напряжение.

Что такое источники тока

Источники тока – это элементы электрической цепи, который поддерживают энергию с заданными параметрами. При этом, энергоснабжение цепи не зависит от характеристик элементов, входящих в её состав, в частности, сопротивления.

Прибор для выработки тока

Различают идеальные и реальные устройства для выработки тока:

  • Идеальные определяются только благодаря гипотезам и теоретическим выкладкам. Так, учёные нередко определяют ряд условий, при которых ток имеет максимальные значения, приближенные к идеалу. То есть, осуществляется имитация идеального источника.
  • Реальные условия поддерживают заданные параметры выходного тока и напряжения. Любой прибор обеспечивает свою работу, при условии, что это позволяют сделать его технические характеристики.

Важно! Таким образом, максимальное значение тока и напряжения дают возможность определить, какой именно вариант источника будет использован в цепи – идеальный или реальный

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий