График колебания силы тока модулированных колебаний высокой частоты в передающей антенне

Как устроен радиопередатчик?

Основой любого радиопередатчика является – задающий генератор несущей частоты.

Эта схема генератора,сама вполне может служить маломощным передатчиком(при наличии антенны).
Электромагнитные колебания генерируемой им частоты, сами по себе не несут никакой
полезной информации. Что бы появилась возможность ее передачи, необходимо изменить несущую частоту,
промодулировав ее полезным сигналом.

Применяются три вида модуляции – амплитудная, частотная и фазная.
При амплитудной модуляции меняется амплитуда несущей частоты, в такт с
амплитудой информационного сигнала.
Частотная модуляция обуславливает девиацию (отклонения) несущей частоты в такт с амплитудой
полезного сигнала.
При фазной модуляции, подобное происходит соответственно, с фазой колебаний несущей
частоты.

Процесс модуляции осуществляется с помощью различных электронных схем.
Например, для частотной модуляции необходимо воздействовать на такие параметры задающего
генератора, как емкость или индуктивность его колебательного контура.
Если подать на переход база – эмиттер транзистора переменное напряжение низкой частоты,
это вызовет изменение его емкости, с периодом поданной частоты.
Соответственно, произойдет частотная модуляция задающего генератора.

Если собрать подобную схему, используя самые распостраненные высокочастотные
транзисторы (например кт315), микрофон динамического типа, можно получить простейший радиомикрофон.
С катушкой L1, состоящей из одного витка одножильного провода диаметром 1-1,5 см, он будет
перекрывать радиовещательный диапазон FM.

Сигнал от такого устройства можно принимать на расстоянии от 50, до 150 метров, в зависимости
от чувствительности используемого приемника. Точная подстройка осуществляется конденсатором С5.
Устройства для прослушки – жучки, собирают по схожим схемам.
Если требуется большая дальность передачи, сигнал задающего генератора необходимо дополнительно усилить,
с помощью выходного усилителя мощности и подать на передающую антенну.

Вынужденные электромагнитные колебания. Резонанс

Вынужденными электромагнитными колебаниями называют периодические изменения заряда, силы тока и напряжения в колебательном контуре, происходящие под действием периодически изменяющейся синусоидальной (переменной) ЭДС от внешнего источника:

где ​\( \varepsilon \)​ – мгновенное значение ЭДС, \( \varepsilon_m \) – амплитудное значение ЭДС.

При этом к контуру подводится энергия, необходимая для компенсации потерь энергии в контуре из-за наличия сопротивления.

Резонанс в электрической цепи – явление резкого возрастания амплитуды вынужденных колебаний силы тока в колебательном контуре с малым активным сопротивлением при совпадении частоты вынужденных колебаний внешней ЭДС с частотой собственных колебаний в контуре.

Емкостное и индуктивное сопротивления по-разному изменяются в зависимости от частоты. С увеличением частоты растет индуктивное сопротивление, а емкостное уменьшается. С уменьшением частоты растет емкостное сопротивление и уменьшается индуктивное сопротивление. Кроме того, колебания напряжения на конденсаторе и катушке имеют разный сдвиг фаз по отношению к колебаниям силы тока: для катушки колебания напряжения и силы тока имеют сдвиг фаз ​\( \varphi_L=-\pi/2 \)​, а на конденсаторе \( \varphi_C=\pi/2 \)​. Это означает, что когда растет энергия магнитного поля катушки, то энергия электрического поля конденсатора убывает, и наоборот. При резонансной частоте индуктивное и емкостное сопротивления компенсируют друг друга и цепь обладает только активным сопротивлением. При резонансе выполняется условие:

Резонансная частота вычисляется по формуле:

Важно!
Резонансная частота не зависит от активного сопротивления ​\( R \)​. Но чем меньше активное сопротивление цепи, тем ярче выражен резонанс

Чем меньше потери энергии в цепи, тем сильнее выражен резонанс. Если активное сопротивление очень мало ​\( (R\to0) \)​, то резонансное значение силы тока неограниченно возрастает. С увеличением сопротивления максимальное значение силы тока уменьшается, и при больших значениях сопротивления резонанс не наблюдается.

График зависимости амплитуды силы тока от частоты называется резонансной кривой. Резонансная кривая имеет больший максимум в цепи с меньшим активным сопротивлением.

Одновременно с ростом силы тока при резонансе резко возрастают напряжения на конденсаторе и катушке. Эти напряжения становятся одинаковыми и во много раз больше внешнего напряжения. Колебания напряжения на катушке индуктивности и конденсаторе всегда происходят в противофазе. При резонансе амплитуды этих напряжений одинаковы и они компенсируют друг друга. Падение напряжения происходит только на активном сопротивлении.

При резонансе возникают наилучшие условия для поступления энергии от источника напряжения в цепь: при резонансе колебания напряжения в цепи совпадают по фазе с колебаниями силы тока. Установление колебаний происходит постепенно. Чем меньше сопротивление, тем больше времени требуется для достижения максимального значения силы тока за счет энергии, поступающей от источника.

Явление резонанса используется в радиосвязи. Каждая передающая станция работает на определенной частоте. С приемной антенной индуктивно связан колебательный контур. При приеме сигнала в катушке возникают переменные ЭДС. С помощью конденсатора переменной емкости добиваются совпадения частоты контура с частотой принимаемых колебаний. Из колебаний всевозможных частот, возбужденных в антенне, контур выделяет колебания, равные его собственной частоте.

Резонанс может привести к перегреву проводов и аварии, если цепь не рассчитана на работу в условиях резонанса.

Свойства электромагнитных волн

Электромагнитная волна – это изменяющееся во времени и распространяющееся в пространстве электромагнитное поле.

Существование электромагнитных волн было теоретически предсказано английским физиком Дж. Максвеллом в 1864 году. Электромагнитные волны были открыты Г. Герцем.

Источник электромагнитной волны – ускоренно движущаяся заряженная частица – колеблющийся заряд.

Важно!
Наличие ускорения – главное условие излучения электромагнитной волны. Интенсивность излученной волны тем больше, чем больше ускорение, с которым движется заряд

Источниками электромагнитных волн служат антенны различных конструкций, в которых возбуждаются высокочастотные колебания.

Электромагнитная волна называется монохроматической, если векторы ​\( \vec{E} \)​ и \( \vec{B} \)​ совершают гармонические колебания с одинаковой частотой (частотой волны).

Длина электромагнитной волны: ​\( \lambda=cT=\frac{c}{\nu}, \)​

где ​\( c \)​ – скорость электромагнитной волны, ​\( T \)​ – период, ​\( \nu \)​ – частота электромагнитной волны.

Свойства электромагнитных волн

  • В вакууме электромагнитная волна распространяется с конечной скоростью, равной скорости света 3·108 м/с.
  • Электромагнитная волна поперечная. Колебания векторов напряженности переменного электрического поля и магнитной индукции переменного магнитного поля взаимно перпендикулярны и лежат в плоскости, перпендикулярной к вектору скорости волны.
  • Электромагнитная волна переносит энергию в направлении распространения волны.

Важно!
Электромагнитная волна в отличие от механической волны может распространяться в вакууме. Плотность потока или интенсивность – это электромагнитная энергия, переносимая через поверхность единичной площади за единицу времени

Плотность потока или интенсивность – это электромагнитная энергия, переносимая через поверхность единичной площади за единицу времени.

Обозначение – ​\( I \)​, единица измерения в СИ – ватт на квадратный метр (Вт/м2).

Важно!
Плотность потока излучения электромагнитной волны от точечного источника убывает обратно пропорционально квадрату расстояния от источника и пропорциональна четвертой степени частоты. Электромагнитная волна обладает общими для любых волн свойствами, это:

Электромагнитная волна обладает общими для любых волн свойствами, это:

  • отражение,
  • преломление,
  • интерференция,
  • дифракция,
  • поляризация.

Электромагнитная волна производит давление на вещество. Это означает, что у электромагнитной волны есть импульс.

Приемник прямого преобразования.

Существует однако, еще один вид приемников, способных вести прием сигнала во всех
диапазонах и любой модуляции – без детектора.
Речь идет о приемниках прямого преобразования – гетеродинных или синхродинов, как их
еще называют.
Схема синхродина содержит в себе смеситель, гетеродин и усилитель звуковой частоты.
Прием осуществляется следующим образом – полезный сигнал попадает из антенны на смеситель,
куда постоянно подаются высокочастотные колебания от гетеродина(его частоту можно менять).

Как только частоты полезного сигнала и гетеродина совпадают – на выходе
смесителя возникают биения с частотой модуляции, – т. е. низкочастотная информативная
составляющая. Полученный сигнал можно возпроизвести, после достаточного усиления.
Несмотря на свою простоту и эффективность, схема прямого преобразования получила
лишь ограниченное распостранение – из-за недостаточно высокого качества передачи музыки
и речи.

На главную страницу

Различные радиоволновые диапазоны.

Радиоволны делятся на различные радиодиапазоны, в зависимости от их длины.
Что такое – длина радиоволны? Радиоволны распостраняются со скоростью света(который сам по себе
является одним из диапазонов электромагнитных колебаний). За секунду, они распостраняются
на расстояние около 300000 километров. Разделив это расстояние на частоту электромагнитных
колебаний можно узнать их длину волны.

Например, колебания частотой от 3 до 30 Кгц. порождают радиоволны сверхдлинного диапазона.
Соответственно, длина сверхдлинных радиоволн лежит в пределах от 10 до 100 километров.
Передача информации на большие расстояния, в этом диапазоне возможна, с применением очень больших передающих
антенных устройств(более километра) и очень мощных передатчиков.
Сверхдлинные волны применяют для дальней подводной связи.

Колебания частотой от 30 до 300 Кгц вызывают радиоволны длинноволнового диапазона.
Их длина от 1 до 10 километров. Они способны огибать земную поверхность, за счет явления –
дифракции.
Дифракцией радиоволн называют их способность
огибать в той или иной степени препятствия,
лежащие на пути распостранения – выпуклость
земного шара, горы, строения и. т. д.

Дифракция возникает в результате возбуждения радиоволной
высокочастотных колебаний на поверхности препятствий.
Эти колебания вызывают в свою очередь вторичное
излучение радиоволн, проникающих в области пространства
затененные от передающей антенны радиопередатчика.
Часть энергии радиоволн при этом неизбежно
теряется – на нагрев поверхности.

Передающие антенны длинноволнового диапазона довольно велики, как и мощность передатчика.

Главным достоинством длинных волн, является возможность очень устойчивой связи, на большое расстояние – без ретранслятора.

Частоты от 0,3 до 3Мгц – принадлежат средневолновому диапазону, от 3 до 30Мгц – коротковолновому.
Волны этих диапазонов способны отражаться от различных слоев ионосферы, что
способствует сверхдальней связи, при относительно невысокой мощности передатчика и
небольших размерах передающей антенны.

Распостранение радиоволн на большие расстояния за
счет пространственных волн объясняется отражением
в ионосфере.
Наряду с отражением имеет место частичное поглощение,
возрастающее с увеличением длины волны.

Отражение и поглощение в ионосфере также связано с концентрацией
электронов – величиной непостоянной.
Ее изменения носят циклический характер
– суточные, сезонные и связанные с 11-летним
солнечным циклом, но нередко случаются и внезапные
изменения – из за вспышек на солнце и падения
метеорных потоков.

Частоты от 30Мгц до 3Ггц – радиоволны ультрокороткого(метрового и дециметрового) диапазона.
Радиоволны этого диапазона хорошо поглощаются земной поверхностью и проходят через
ионосферу – устойчивая связь возможна до линии горизонта.
Плюсом здесь является качественная связь, при крайне малой мощности передатчика – и
сответственно,возможности миниатюризации его размеров.

Сверхвысокочастотный диапазон 3 – 30Ггц(сантиметровый) используется для космической связи.
Электромагнитные колебания такой частоты по своим свойствам вплотную приближаются к свету.
Их можно легко фокусировать с помощью сферических отражателей, для передачи на очень
большие расстояния.

Забегая назад

Давайте сделаем небольшое отступление. Настала пора вспомнить об антеннах. Эти устройства и позволяют улавливать (и передавать) электромагнитные волны. Может быть у кого-то вызовет недоумение, почему речь о них заводится не в начале повествования. Это не ошибка. Мы преднамеренно подняли вопрос об антеннах после описания колебательного контура, так как антенна, по сути, тоже колебательный контур, но со слабо выраженными резонансными свойствами. Обычно антенну рассматривают как катушку индуктивности, а емкостью будет… она же, выступающая в роли одной из обкладок конденсатора, второй же обкладкой будет поверхность земли. Становится очевидным, что параметры антенны также влияют на способность приемника принимать определенную радиостанцию. Индуктивность и емкость антенны, определяется ее геометрическими размерами, конструкцией, материалом и т.п. Рассчитать антенну гораздо сложнее, чем обычный колебательный контур, состоящий из катушки и конденсатора. Со времен изобретения радио ученые бьются над созданием идеальной антенны, эффективность которой была бы максимальной, а размеры минимальны. Но, к сожалению, идеальность недостижима.

Антеннам посвящена масса всевозможных публикаций в различных источниках, кого это интересует, могут «порыться» в Интернете. Не будем усложнять и без того непростой рассказ, а приведем лишь общие тезисы.

Антенна – колебательная система и для достижения максимальной эффективности ее необходимо настроить в резонанс с принимаемой (в приемнике) и передающей (в передатчике) частотой.

Антенна способна принимать сигналы всех радиочастот, но из-за своих колебательных свойств будет более эффективно работать в пределах определенного диапазона, на который она рассчитана.

В самом простом виде антенна это кусок провода. В радиостанциях и высококачественных приемниках антенна представляет собой довольно сложную конструкцию, от которой в большой степени зависит способность приемника принимать слабые сигналы.

Радиотелефонная связь

Радиотелефонная связь основана на колебаниях давления воздуха в звуковой волне, которые модифицируются через микрофон на электрические колебания той же формы.

Для создания радиотелефонной связи была смоделирована система, которая позволяла антенне генерировать высокочастотные колебания. Принцип работы заключался в следующем. Передача звука осуществлялась за счёт того, что высокочастотные колебания модулировали (изменяли) с применением низкочастотных колебаний. Такое преобразование актуально и сейчас и называется амплитудной модуляцией.

Ниже на рисунке представлены три графика, соответствующие высокочастотным колебаниям (а), модулирующим колебаниями (б) и модулированных по амплитуде колебаний (в).

Кроме последней (амплитудной модуляции) используется и частотная модуляция, которая характеризуется постоянством амплитуды несущей волны и изменением частоты.

Модуляция играет ключевую роль в радиотелефонной связи. Если бы её не было, то приёмник мог бы распознавать только работу или молчание станции.

Процесс, который отвечает за выделение в приёмнике низкочастотных колебаний из модулированных высокочастотных колебаний называется детектированием. При этом сигналы «на входе» и «выходе» совпадают между собой. То есть в результате детектирования сигнал соответствует тому же звуку, который был зафиксирован микрофоном передатчика.

Основные принципы радиосвязи представлены на рисунке ниже.

Выбери ответ

Классы

  • 11 класс
  • 10 класс
  • 9 класс
  • 8 класс
  • 7 класс
  • 6 класс
  • 5 класс
  • 4 класс
  • 3 класс
  • 2 класс
  • 1 класс

Предметы

  • Русский
  • Общество
  • История
  • Математика
  • Физика
  • Литература
  • Английский
  • Информатика
  • Химия
  • Биология
  • География

Онлайн-школы

  • Умскул
  • Учи Дома
  • Фоксфорд
  • Тетрика
  • Skypro

Репетиторы по предметам

  • Русский
  • Общество
  • История
  • Математика
  • Физика
  • Литература
  • Английский
  • Информатика
  • Химия
  • Биология

Общий принцип

Общий принцип радиосвязи довольно прост: в радиопередатчике специальным генератором формируются электрические колебания высокой частоты, которые затем смешиваются с полезным сигналом (модулируются) и при поступлении в антенну, преобразуются в электромагнитные волны, распространяющиеся в пространстве. Достигнув антенны приемника, электромагнитные волны наводят в ней переменный ток, который усиливается, демодулируется и поступает на устройство воспроизведения.

За кажущейся простотой этой схемы скрыты десятилетия упорных исследований и экспериментов нескольких поколений ученых. И хотя основным принципам передачи и приема электромагнитных волн более 100 лет, до сих пор ученые бьются над повышением и понижением, увеличением и уменьшением, удешевлением и… Но реальность далека от идеала – увеличение в одном месте зачастую приводит к уменьшению в другом. И нет предела совершенству.

Детекторный приемник.

Детекторный приемник самое простое устройство, позволяющее произвести прием радиовещательных
радиостанций, использующих амплитудную модуляцию.
Классический детекторный приемник рассчитанный на прием в диапазоне длинных и средних волн
состоит из колебательного контура, амплитудного детектора, собранного на одном диоде и высокоомных
головных телефонов (наушников, говоря по-просту).
Рисунок иллюстрирующий принцип работы амплитудного детектора

На рисунке диод “обрезает” отрицательную составляющую радиосигнала.
Затем, фильтрующая емкость производит выделение огибающей выпрямленного сигнала высокой
частоты – получается сигнал низкой частоты.

Вот так, может выглядеть схема реального детектороного приемника.

В качестве колебательного контура можно использовать конденсатор переменной емкости(C1),
от любого неисправного промышленного приемника и магнитную антенну от него же.

Наушники – старинные головные телефоны ТОН-2.

Приемник

Все мы пользуемся устройствами приема электромагнитных волн, но редко задумываемся о принципах их работы. В опыте, описанном выше, мы могли убедиться, что для приема радиосигналов достаточно обычного куска провода. Но провод позволяет только обнаружить сигнал. Чтобы его можно было выделить из множества других и услышать потребуется уже более сложное оборудование.

В первых приемниках созданных Поповым и Маркони для передачи информации использовался телеграф (точки и тире кода Морзе). В то время не особенно беспокоились над приемом сигналов конкретной радиостанции. Эфир был относительно чист. Кроме того, при приеме телеграфных сигналов можно было не задумываться о его качестве. Код Морзе можно было передавать хоть тоном, хоть треском, хоть скрипом. Главное – отличить точку от тире. Дальность связи в основном определялась мощностью передатчика и эффективностью (габаритами) антенн. В качестве регистратора сигналов в то время использовалось специальное устройство – когерер, представляющее собой стеклянную трубку, заполненную металлическими опилками. При прохождении электрического сигнала опилки спекались и становились проводником тока.

Когерер. Для наглядности металлические пластины изображены раздвинутыми

При включении когерера в цепь, состоящую из источника питания (батареи) и сигнального устройства (звонка или самописца) можно было фиксировать принятые точки и тире. При всей простоте способа, когерер не позволял принимать голос. Для этого требовались приборы, работающие на других принципах.

Радио развивалось. На смену когереру пришли более чувствительные устройства, такие как кристаллические детекторы, жидкостные бареттеры, магнитные детекторы и т.п. Большим достижением стало появление электронных ламп и полупроводниковых приборов.

Супергетеродин.

Супергетеродин, приемник с преобразованием частоты – это наиболее распостраненная схема.
Она содержит в себе маломощный генератор колебаний
промежуточной частоты – гетеродин.

Частота генерации гетеродина меняется одновременно с изменением настройки входной частоты.
Для этого применяется двухсекционный конденсатор переменной емкости – одна секция использована
в входном колебательном контуре, вторая – в контуре гетеродина.

Причем, гетеродин настроен так, что разница между собственной его частотой и частотой
радиосигнала остается примерно неизменной на протяжении всего перестраевомого диапазона.
Это и есть промежуточная частота, которая выделяется в смесителе – каскаде где
обе частоты встречаются.
Причем, полученная таким образом промежуточная частота оказывается промодулированой полезным
сигналом.

Далее, происходит усиление промежуточной частоты каскадами усилителя промежуточной частоты.
Такие каскады имеют повышенный коэффициент усиления только на этой частоте, что исключает
самовозбуждение усилителя.
После усиления промежуточной частоты, происходит детектирование и окончательное усиление полезного сигнала.
Супергетеродин обеспечивает высокую селективность и достаточную чувствительность для работы
во всех радиовещательных диапазонах.

Кроме того, появляется возможность приема и детектирования частотно – модулированных сигналов
на частотах УКВ, что значительно улушает качество воспроизведения звука.
Самая распостраненная схема частотного детектора – балансная, содержит в себе два контура,
настроенных на несущую частоту с некоторым отклонением – слегка рассогласоваными.
Частота первого из них настраивается несколько выше, а второго – несколько ниже промежуточной
частоты.

Модулированная промежуточная частота отклоняясь от своего среднего значения наводит
колебания(может быть – звуковые) полезного сигнала выделяемые на резисторах R1 и R2.

У входа в радиоприемник

Для приема радиопередач необходима приемная антенна. Она не отличается от передающей антенны, но назначение ее — другое. Она должна уловить энергию, которую несут радиоволны.

Когда переменное электромагнитное поле встречает на своем пути металлический провод антенны, оно воздействует на свободные электроны, заключенные в проводнике.

Электроны приходят в колебательное движение и послушно повторяют все изменения электромагнитного поля. В результате в приемной антенне возникает переменный ток.

Этот ток очень мал. Но его изменения совершаются в такт с колебаниями приходящих радиоволн и, значит, в точности совпадают с изменениями тока, который протекает в антенне, излучающей радиоволны.

Приемная антенна соединяется с радиоприемником, к которому и подводятся электрические колебания, со_зданные в антенне. Теперь очередь за ним.

Какие сложные задачи предстоит выполнить приемнику? Электрические явления, происходящие в схеме этого маленького радиоаппарата, пожалуй, сложнее тех, какие происходят в радиопередатчиках, занимающих иногда целые здания.

Как сортируются радиоволны. Включив радиоприемник, мы начинаем его настраивать, вращая одну из ручек.

Что же происходит при настройке приемника и почему она необходима? В настоящее время имеется очень много передающих радиостанций. Они находятся в разных городах и ведут различные передачи. Одна из них передает доклад, другая — последние известия, третья — концерт и т. д.

Каждая станция излучает радиоволны, которые доходят до приемных антенн и возбуждают в них электрические колебания. Антенна в одно и то же время принимает все передачи.

Если бы слушали их одновременно, то услышали бы такую смесь звуков, из которой ничего нельзя было бы понять. Чтобы этого не было, все радиостанции работают на разных волнах.

Это значит, что каждая из них излучает электромагнитные колебания лишь определенной, только для нее установленной частоты.

Рис. 1. Контур пропускает колебания с частотой, на которую он настроен.

Следовательно, в приемной антенне любая радиостанция возбуждает колебания своей частоты, отличной от частот других станций. И вот, чтобы можно было слушать каждую передачу в отдельности, приемник отбирает из всех колебаний, возбуждаемых в антенне, только колебания одной радиостанции (рис. 1).

Такая сортировка радиоволн происходит в колебательном контуре радиоприемника, куда попадают электрические колебания, принятые антенной. Здесь используются свойства электрического резонанса колебательного контура.

Явление резонанса нам приходится наблюдать очень часто. Струну любого музыкального инструмента можно заставить звучать, не прикасаясь к ней, стоит только вблизи нее издать такой же звук, какой она сама может издавать. Например, положим на стол две одинаково настроенные гитары и заставим струну одной из них сильно звучать.

Если прекратить тотчас же (прижав рукой) колебания этой струны, можно легко заметить, что одинаково настроенная струна другой гитары будет слабо звучать, хотя к ней и не прикасались.

Резонанс широко используется в музыке. Но в строительном деле стараются, наоборот, избежать резонанса. Строителям приходится вести с ним борьбу, так как механический резонанс может привести к разрушениям.

Лет 50 назад в Петербурге неожиданно рухнул висячий Египетский мост, когда по нему «в ногу» проходила войсковая часть. Возник резонанс, мост недопустимо сильно раскачался ритмическими толчками ног, и произошел обвал.

«Супер-супергетеродин» или супергетеродин с двойным преобразованием частоты

В приемной части современных радиостанций в большинстве случаев применяется более сложный вид супергетеродинной схемы. Так называемый супергетеродин с двойным преобразованием частоты. От обычного супергетеродина он отличается наличием второго преобразователя и второй промежуточной частоты. Это позволяет обеспечить еще большую чувствительность, избирательность и помехозащищенность. Схема супергетеродина с двойным преобразованием похожа на схему обычного супергетеродина, но с добавлением еще одного гетеродина, смесителя, а также соответствующих каскадов усиления и фильтрации. Первая промежуточная частота обычно более высокая (10.7, 17, 21, 45… МГц), а вторая более низкая (455 кГц).

Блок-схема супергетеродинного приемника с двойным преобразованием частоты

Большинство приемников современных радиостанций и другого радиосвязного оборудования собираются по схеме супергетеродина с двойным преобразованием. В некоторых случаях, в частности в высококлассных любительских приемниках и в специальной технике, применяются супергетеродинные схемы с тройным преобразованием. Их принцип работы очевиден из названия.

Как работает устройство А. С. Попова

Подаваемый ток циркулирует от зажима P к платиновой пластике A. Далее он попадает в стеклянную трубку с металлической стружкой, выходя из которой оказывается в полости другой пластики B. Циркуляция по контуру обеспечивается по обмотке электромагнита реле, соединённого с батареей

Важно, что сила такого тока не гарантирует притягивание якоря реле. Но в случае, когда на трубку АВ подействуют электромагнитные силы, фиксируется появление многочисленных искорок между опилками

Сопротивление такой конструкции молниеносно уменьшается в несколько сотен раз. Благодаря этому сила тока увеличивается до тех значений, которые способны притянуть якорь реле. В это же время цепь, которая соединяет батарею и звонок, замыкается. Намагниченная часть реле притягивает пластинку с молоточком, и происходит удар по чаше звонка. Далее, двигаясь в обратную сторону, молоток сталкивается с когерером, который начинает колебаться. Процесс завершается тогда, когда реле размыкает цепь звонка.

Попов понимал, что аппарат требует особой чувствительности, поэтому учёный решил заземлить один из выходов когерера, а второй выход – присоединил к высоко поднятому куску проволоки. Ну что? Уже появились первые ассоциации с современными радиоприёмниками? Эта самая проволока – это прототип будущей антенны для беспроволочной связи.

Значимость заземления состоит в том, что оно превращает проводящую естественную поверхность в компоненту открытого колебательного контура, тем самым увеличивая дальность распространения сигнала.

Современные радиоприёмники, конечно, мало похожи на своего предшественника, но они схожи по принципу действия.

Диапазоны радиосвязи не были впечатляющими в то время. Допустимое расстояние для связи ограничивалось лишь 250 м. Однако А. С. Попов не сдавался и вскоре увеличил этот диапазон до 600 м. Дальше – больше. В 1899 году изобретатель смог установить радиосвязь дальностью свыше 20 км, а через два года эта цифра увеличилась в 8 раз. Такой прогресс объяснялся внедрением искрового промежутка в колебательный контур, индуктивно связанного с передающей антенной с настроенным условием резонанса.

Помимо тех устройств, которые выдают сигналы, модифицировались и те, которые эти сигналы принимают. Помимо звонка был подключён телеграфный аппарат, позволяющий автоматически записывать приходящие данные. Благодаря А. С. Попову радиотехника стала передовым направлением в вооружённых силах России.

Презентация радиоприёмника А.С. Поповым произошла 7 мая. С тех пор этот день отмечается в России ежегодно.

Заключение

Радиопередающее устройство используется для приема той информации, которая передается благодаря электромагнитным волнам, исходящим от передающей антенны современного радиопередатчика. В данном устройстве предполагается наличие следующих основных элементов:

  • Приемная антенна, которая нужна для улавливания электромагнитных колебаний. Здесь систематически возникают модулированные вынужденные колебания, которые возбуждаются разнообразными радиостанциями.
  • Резонансный контур настраивается на конкретную частоту, считающуюся полезным сигналом.
  • Детекторный каскад необходим для предобразования усиленного модулированного высокочастотного сигнала, а также выделения из него модулирующего сигнала, который несет передаваемую информацию.

Детектирование является процессом, противоположным модуляции. Детекторами выступают полупроводниковые приборы и электронные лампы, которые имеют нелинейные характеристики. Моделирование и детектирование являются основными процессами, которые способствуют передаче и приему звука и изображения, то есть они связаны с передачей телевизионного изображения и звукового сигнала.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий