Где и зачем использовать пластинчатые теплообменники?

Настенные котлы с раздельными теплообменниками

Стандартный котел работает следующим образом: при помощи циркуляционного насоса теплоноситель постоянно движется через первый теплообменник, который нагревается от горелки. Таким образом, горячая вода движется по отопительной системе от теплообменника к радиаторам и обратно.

Когда возникает потребность в горячем водоснабжении, специальный датчик дает сигнал и трехходовой кран направляет горячую воду из первого теплообменника во второй. Другими словами, холодная вода во втором теплообменнике нагревается не от горелки, а от уже разогретого теплоносителя.

Такой способ позволяет снизить затраты на отопление за счет более экономного расхода топлива во время потребления горячей воды для бытовых нужд.

Преимущества использования котлов с раздельными теплообменниками:

  • Максимальная температура горячей воды не превышает 60 градусов. Этого вполне достаточно для любых нужд. При этом вероятность получить ожог во время приема душа сводится к нулю.
  • Второй теплообменник имеет большой срок эксплуатации, так как используется реже.
  • Несложная конструкция. Котлы с раздельными теплообменниками легко ремонтируются. В большинстве случаев это можно сделать своими руками, сэкономив на услугах профессиональных мастеров.
  • Риск засорения сведен к минимуму. Практика показывает, что необходимость технического обслуживание у раздельных теплообменников возникает реже, чем у битермических.

Рекомендуем: Принцип работы пиролизного котла — описание технологического процессаВажно: Несмотря на простоту обслуживания раздельных теплообменников, лучше не делать этого самостоятельно, если у вас нет опыта. Это может быть опасно. Во всех документах, поставляемых с отопительным оборудованием, производители настойчиво требуют воздерживаться от ремонта своими руками

Во всех документах, поставляемых с отопительным оборудованием, производители настойчиво требуют воздерживаться от ремонта своими руками.

Недостатки:

  • Раздельные теплообменники занимают больше места, вследствие чего размеры котла могут быть больше, чем требуется покупателю.
  • Работа котла невозможна без трехходового крана. Его задача заключается в автоматическом перенаправлении потока воды во второй теплообменник, когда жильцы дома начинают пользоваться горячим водоснабжением. Такие краны часто выходят из строя и нуждаются в замене, что создает большие неудобства.
  • Цена на котлы с раздельными теплообменниками может быть выше из-за большего количества комплектующих.

Как видите, такие котлы имеют не только положительные качества, но и недостатки, о которых обязательно нужно знать, прежде, чем принимать решение о покупке.

В качестве примера можно рассмотреть настенный котел Baxi Eco Compact 14F. Эта модель популярна на рынке за счет доступной цены, компактных размеров и хорошей электроники.

Температура нагрева воды (ГВС) находится в диапазоне от 35 до 60 градусов. Котел работает от природного газа и потребляет 1,6 м3 топлива в час. Компактные размеры (700x400x298 мм) позволяют установить его в любом помещении без специальной подготовки места.

Котел с раздельными теплообменниками Baxi Eco Compact 14F рекомендуется для установки в помещениях общей площадью не более 140 м2. Данное оборудование легко справляется с эксплуатацией в российских условиях, что подтверждают многие наши клиенты, купившие котел Baxi Eco Compact 14F.

Особенности конструкции

Основное предназначение любого вида пластичного теплообменника состоит в преобразовании нагретой жидкости в охлажденную среду. Конструкция пластинчатого теплообменника имеет разборные части, а состоит устройство из следующих элементов:

  • набора пластин;
  • подвижной и неподвижной плиты;
  • верхней и нижней направляющей округлой формы;
  • элементов крепления, которые объединяют плиты в общую раму.

Размеры рам разных изделий могут значительно различаться. Они будут зависеть от теплоотдачи и мощности нагревателя — с большим количеством пластин повышается продуктивность оборудования и, естественно, увеличивается вес и габариты.

На теплообменнике можно управлять мощностью – увеличивать или уменьшать

Преимущества пластинчатых приборов:

  • незначительные производственные и инвестиционные затраты;
  • высокоэффективная теплопередача;
  • малые габариты;
  • эффект самоочистки с помощью высокого турбулентного потока;
  • возможность увеличить КПД благодаря добавлению пластин;
  • высокая степень надежности;
  • легкость промывки;
  • небольшая масса;
  • легкость монтажа;
  • минимальное загрязнение поверхностей;
  • невозможность смешения жидкостей за счет особой конфигурации уплотнения;
  • высокая устойчивость к коррозии;
  • минимальная поверхность теплообмена благодаря высокому КПД;
  • незначительные потери давления благодаря оптимальному выбору пластин с разными видами профилей;
  • эффективная регулировка температуры за счет небольшого объема теплоносителя.

В этом видео вы узнаете, как образуется горячая вода благодаря теплообменнику:

Особенности теплообменника

Разберемся, для чего нужен теплообменник. В устройстве две различные среды делятся между собой тепловой энергией. Горячая вода в одной емкости отдает свою температуру холодной жидкости, которая движется в другом резервуаре. А самым простым примером выступает система из двух стальных труб разного диаметра.

По меньшей двигается холодная вода. А небольшой участок этой трубы помещен в другую, большего диаметра. В последней находится горячая вода. И уже через короткое время температуры обеих жидкостей сравниваются.

Чтобы процесс протекал устойчиво и постоянно, воду заставляют двигаться (циркулировать). А придание потокам определенных скоростей позволяет свести к минимуму все потери тепла. Причем для нагрева сразу двух систем используется лишь один источник энергии.

Такое обустройство значительно повышает автономность жилища. А исключение из работы лишнего оборудования позволяет меньше зависеть от сетевых ресурсов. Тем самым снижая расходы в доме на энергоносители.

Теплообменник из нержавейки Источник s-ip.com.ua

На работоспособность всей системы влияет:

  • Модель устройства (конструкция).
  • Температурный режим.
  • Состояние системы.

Последний пункт относится к величине потерь тепла. За это отвечает поверхность труб, по которым двигается жидкость. Если на стенках образовалась накипь, то теплоотдача системы значительно понижается. На последнюю влияют и другие факторы, вплоть до простых жировых отложений.

В борьбе с потерями на первое место выступает профилактика засоров и загрязнений. Теплообменник для отопления оборудуется фильтрами, которые отсеивают посторонние частицы и взвесь. Также через определенные промежутки времени устройство должно проходить полную очистку от накипи и других отложений. Для этого его разбирают и промывают при помощи специальных средств.

Основные виды пластинчатых теплообменников, их предназначение и преимущества:

Разборные (конструкция представляет собой пакет пластин и резиновые уплотнители):

  • низкие затраты на производство и монтаж;
  • регулируемая, легко настраиваемая производительность;
  • несложная дешевая эксплуатация, быстрый ремонт;
  • безотказность, минимальные интервалы простоя;
  • низкая энергоемкость;
  • возможность переработки.

Сфера применения пластинчатого теплообменника с разборной конструкцией: системы отопления, бассейны, холодильное и климатическое оборудование, горячее водоснабжение, теплопункты.

Паяные (цельная конструкция со спаянными пластинами, без резиновых прокладок):

  • компактность и низкая стоимость;
  • оптимальное соотношение производительности и стоимости;
  • быстрый и дешевый монтаж и сборка;
  • надежность и безотказность.

Область применения паяных конструкций: холодильные аппараты, компрессоры и турбинные установки, кондиционеры и вентиляторы, промышленные установки разного назначения.

Сварные и полусварные (соединенные при помощи сварных швов):

  • простая компактная конструкция без уплотняющих прокладок;
  • регулируемый поток;
  • устойчивость к действию агрессивных сред;
  • максимальный диапазон температур;
  • допустимое давление до 4 МПа, температура до 300 °С;
  • простота монтажа;
  • устойчивость к абразивным и агрессивным веществам;
  • надежность и длительный рабочий ресурс.

Сфера применения сварных и полусварных агрегатов: пищевая, химическая и фармацевтическая отрасль, системы кондиционирования и охлаждения, в том числе в промышленности и медицине, работа тепловых насосов и систем горячего водоснабжения.

Устройство и принцип работы

Конструкция разборного пластинчатого теплообменника включает в себя:

  • стационарную переднюю плиту на которой монтируются входные и выходные патрубки;
  • неподвижную прижимную плиту;
  • подвижную прижимную плиту;
  • пакет теплообменных пластин;
  • уплотнения из термостойкого и устойчивого к воздействию агрессивных сред материала;
  • верхнюю несущую базу;
  • нижнюю направляющую базу;
  • станину;
  • комплект стяжных болтов;
  • Набор опорных лап.

Такая компоновка агрегата обеспечивает максимальную интенсивность теплообмена между рабочими средами и компактные габариты устройства.

Конструкция разборного пластинчатого теплообменника

Чаще всего, теплообменные пластины изготавливаются методом холодной штамповки из нержавеющей стали толщиной от 0,5 до 1 мм, однако, при использовании в качестве рабочей среды химически активных соединений, могут использоваться титановые или никелевые пластины.

Все пластины, входящие в состав рабочего комплекта, имеют одинаковую форму и устанавливаются последовательно, в зеркальном отражении. Такая методика установки теплообменных пластин обеспечивает не только формирование щелевых каналов, но и чередование первичного и вторичного контуров.

Каждая пластина имеет 4 отверстия, два из которых обеспечивают циркуляцию первичной рабочей среды, а два других изолируются дополнительными контурными прокладками, исключающими возможность смешивания рабочих сред. Герметичность соединения пластин обеспечивается специальными контурными уплотнительными прокладками, изготовленными из термостойкого и устойчивого к воздействию активных химических соединений материала. Устанавливаются прокладки в профильные канавки и фиксируются с помощью клипсового замка.

Принцип работы пластинчатого теплообменника

Оценка эффективности любого пластинчатого ТО осуществляется по следующим критериям:

  • мощности;
  • максимальной температуре рабочей среды;
  • пропускной способности;
  • гидравлическому сопротивлению.

Исходя из этих параметров подбирается необходимая модель теплообменника. В разборных пластинчатых теплообменниках регулировать пропускную способность и гидравлическое сопротивление можно, изменяя количество и тип пластинчатых элементов.

Интенсивность теплообмена обусловлена режимом течения рабочей среды:

  • при ламинарном течении теплоносителя интенсивность теплообмена минимальна;
  • для переходного режима характерно увеличение интенсивности теплообмена за счет появления завихрений в рабочей среде;
  • максимальная интенсивность теплообмена достигается при турбулентном движении теплоносителя.

Рабочие характеристики пластинчатого ТО рассчитываются для турбулентного течения рабочей среды.

В зависимости от расположения канавок, различают три типа теплообменных пластин:

  1. с «мягкими» каналами (канавки расположены под углом 600). Для таких пластин характерна незначительная турбулентность и небольшая интенсивность теплообмена, однако «мягкие» пластины обладают минимальным гидравлическим сопротивлением;
  2. со «средними» каналами (угол рифления от 60 до 300). Пластины являются переходным вариантом и отличаются средними показателями турбулентности и интенсивности теплопередачи;
  3. с «жесткими» каналами (угол рифления 300). Для таких пластин характерна максимальная турбулентность, интенсивный теплообмен и значительное увеличение гидравлического сопротивления.

Для увеличения эффективности теплообмена движение первичной и вторичной рабочей среды осуществляется в противоположном направлении. Процесс теплообмена между первичной и вторичной рабочими средами происходит следующим образом:

  1. Теплоноситель подается на входные патрубки теплообменника;
  2. При перемещении рабочих сред по соответствующим контурам, сформированным из теплообменных пластинчатых элементов, происходит интенсивная теплопередача от нагретой среды нагреваемой;
  3. Через выходные патрубки теплообменника нагретый теплоноситель направляется по назначению (в отопительные, вентиляционные, водопроводные системы), а остывший теплоноситель снова попадает в рабочую зону теплогенератора.

Конструктивные особенности теплообменника

Конструктивно теплообменник является сборным агрегатом, состоящим, из следующих элементов:

  • неподвижная плита;
  • подвижная плита;
  • комплект пластин из нержавейки;
  • элементы крепежа для стяжки плит образующих основную раму;
  • два направляющих в нижней и верхней части агрегата по форме напоминающих круглый прут.


Более мощные модели оснащаются большим количеством пластин

Обеспечение герметизации протоков для циркуляции жидкости достигается благодаря прокладкам из специальной резины. Необходимая степень плотности прилегания прокладок, размещённых, на пластинах, установленных по соседству, обеспечивается стягиванием неподвижной и подвижной плиты.

Если подойди к рассмотрению теплообменника со стороны воздействующих на агрегат нагрузок, то основное их действие направлено на пластины и резиновые прокладки. В свою очередь, рама и стяжки — это просто корпус прибора. Поэтому основной теплообменника являются пластинчатые элементы.

Устройство и принцип работы

Конструкция разборного пластинчатого теплообменника включает в себя:

  • стационарную переднюю плиту на которой монтируются входные и выходные патрубки;
  • неподвижную прижимную плиту;
  • подвижную прижимную плиту;
  • пакет теплообменных пластин;
  • уплотнения из термостойкого и устойчивого к воздействию агрессивных сред материала;
  • верхнюю несущую базу;
  • нижнюю направляющую базу;
  • станину;
  • комплект стяжных болтов;
  • Набор опорных лап.

Такая компоновка агрегата обеспечивает максимальную интенсивность теплообмена между рабочими средами и компактные габариты устройства.

Конструкция разборного пластинчатого теплообменника

Чаще всего, теплообменные пластины изготавливаются методом холодной штамповки из нержавеющей стали толщиной от 0,5 до 1 мм, однако, при использовании в качестве рабочей среды химически активных соединений, могут использоваться титановые или никелевые пластины.

Все пластины, входящие в состав рабочего комплекта, имеют одинаковую форму и устанавливаются последовательно, в зеркальном отражении. Такая методика установки теплообменных пластин обеспечивает не только формирование щелевых каналов, но и чередование первичного и вторичного контуров.

Каждая пластина имеет 4 отверстия, два из которых обеспечивают циркуляцию первичной рабочей среды, а два других изолируются дополнительными контурными прокладками, исключающими возможность смешивания рабочих сред. Герметичность соединения пластин обеспечивается специальными контурными уплотнительными прокладками, изготовленными из термостойкого и устойчивого к воздействию активных химических соединений материала. Устанавливаются прокладки в профильные канавки и фиксируются с помощью клипсового замка.

Принцип работы пластинчатого теплообменника

Оценка эффективности любого пластинчатого ТО осуществляется по следующим критериям:

  • мощности;
  • максимальной температуре рабочей среды;
  • пропускной способности;
  • гидравлическому сопротивлению.

Исходя из этих параметров подбирается необходимая модель теплообменника. В разборных пластинчатых теплообменниках регулировать пропускную способность и гидравлическое сопротивление можно, изменяя количество и тип пластинчатых элементов.

Интенсивность теплообмена обусловлена режимом течения рабочей среды:

  • при ламинарном течении теплоносителя интенсивность теплообмена минимальна;
  • для переходного режима характерно увеличение интенсивности теплообмена за счет появления завихрений в рабочей среде;
  • максимальная интенсивность теплообмена достигается при турбулентном движении теплоносителя.

Рабочие характеристики пластинчатого ТО рассчитываются для турбулентного течения рабочей среды.

В зависимости от расположения канавок, различают три типа теплообменных пластин:

  1. с «мягкими» каналами (канавки расположены под углом 60). Для таких пластин характерна незначительная турбулентность и небольшая интенсивность теплообмена, однако «мягкие» пластины обладают минимальным гидравлическим сопротивлением;
  2. со «средними» каналами (угол рифления от 60 до 30). Пластины являются переходным вариантом и отличаются средними показателями турбулентности и интенсивности теплопередачи;
  3. с «жесткими» каналами (угол рифления 30). Для таких пластин характерна максимальная турбулентность, интенсивный теплообмен и значительное увеличение гидравлического сопротивления.

Для увеличения эффективности теплообмена движение первичной и вторичной рабочей среды осуществляется в противоположном направлении. Процесс теплообмена между первичной и вторичной рабочими средами происходит следующим образом:

  1. Теплоноситель подается на входные патрубки теплообменника;
  2. При перемещении рабочих сред по соответствующим контурам, сформированным из теплообменных пластинчатых элементов, происходит интенсивная теплопередача от нагретой среды нагреваемой;
  3. Через выходные патрубки теплообменника нагретый теплоноситель направляется по назначению (в отопительные, вентиляционные, водопроводные системы), а остывший теплоноситель снова попадает в рабочую зону теплогенератора.

Принцип работы пластинчатого теплообменного аппарата

Для обеспечения эффективной работы системы необходима полная герметичность теплообменных каналов, которая обеспечивается уплотнительными прокладками.

Устройство и принцип работы

Пластинчатый теплообменник (ПТО) обеспечивает переход тепла от нагретого теплоносителя холодному, при этом не перемешивая их, развязывая два контура между собой. Теплоносителем может быть пар, вода или масло. В случае с горячим водоснабжением чаще источником тепла является теплоноситель системы отопления, а нагреваемой средой – холодная вода.

Конструктивно теплообменник представляет собой группу гофрированных пластин, собранных параллельно друг другу. Между ними образуются каналы, по которым течет теплоноситель и нагреваемая среда, притом послойно они чередуются между собой, не перемешиваясь при этом. За счет чередования слоев, по которым текут жидкости обоих контуров, увеличивается площадь теплообмена.

Схема работы теплообменника

Гофрирование чаше выполняется в виде волн, притом ориентированных так, чтобы каналы одного контура располагались под углом к каналам второго контура.

Подключение входов и выходов делаются так, чтобы жидкости текли навстречу друг другу.

Поверхность и материал пластин подбирается исходя из требуемой мощности теплообмена, вида теплоносителя. В особенно эффективных и продуманных теплообменниках поверхность формуется для возбуждения завихрений возле поверхности пластины, повышая теплообмен, не создавая сильного сопротивления общему току.

Теплообменник включается между двумя контурами:

  1. Последовательно к системе отопления или параллельно с наличием регулирующей арматуры.
  2. К входу от холодного водопровода и выходом к потребителю ГВС.

Холодная вода, протекая через теплообменник нагревается за счет тепла от системы отопления до требуемой температуры и подается на кран потребителя.

Основные характеристики пластинчатого теплообменника:

  • Мощность, Вт;
  • Максимальная температура теплоносителя, оС;
  • Пропускная способность, производительность, литры/час;
  • Коэффициент гидравлического сопротивления.

Мощность зависит от общей площади теплообмена, перепада температур в обоих контурах между входов и выходом и даже от числа пластин.

Максимальная температура задается подбором материалов и способом соединения пластин и корпуса теплообменника.

Пропускная способность повышается с увеличением числа пластин, так как они подключаются фактически параллельно, то каждая новая пара пластин добавляет дополнительный канал для тока жидкости.

Коэффициент гидравлического сопротивления важен при расчете нагрузки на систему отопления, где от этого зависит выбор циркуляционного насоса, немаловажен и для других источников тепла. Зависит от типа гофрирования пластин и размера сечения каналов и их количества.

Именно по этим параметрам подбирается в итоге теплообменник для конкретной ситуации. Чаще всего пластинчатые теплообменники имеют разборную конструкцию, в которой можно наращивать или уменьшать число пластин и выбирать их тип и размер. Мощность и производительность теплообменника должно хватать для того, чтобы нагреть проточную холодную воду, и при этом не создать критической нагрузки на систему отопления.

Для наиболее востребованных случаев, каким является обеспечение горячей водой частного хозяйства, дома или квартиры производятся готовые теплообменники с постоянными характеристиками.

Требования к прокладкам

К аппаратам с пластинами предъявлены довольно жесткие требования касательно герметичности оборудования, именно по этой причине на сегодняшний день прокладки начали изготавливать из полимеров. К примеру, этиленпропилен может с легкостью эксплуатироваться в условиях повышенных температур — и пара, и жидкости. Однако довольно быстро начинает разрушаться в среде, которая содержит большое количество жиров и кислот.

Теплообменники различаются количеством пластин

Крепление уплотнителей к пластинам производится чаще всего с помощью клипсовых замков, в редких случаях — с помощью клеящего состава.

Спиральные теплообменники

Спиральный теплообменник был изобретен в двадцатых годах ХХ века шведским инженером Розенбладом для применения в целлюлознобумажной промышленности. Эти теплообменники впервые позволили обеспечить надежную теплопередачу между средами, содержащими твердые включения. В 70-х годах конструкция спиральных теплообменников была радикально изменена и улучшена, и приобрела большие преимущества по сравнению с конструкцией Розенблада.

Два или четыре длинных металлических листа укладывают спиралью вокруг центральной трубы, образуя два или четыре однопроточных канала. Чтобы обеспечить постоянную величину зазоров, к одной стороне листов привариваются разделительные шипы. Центральная труба при помощи специальной перегородки разделена на две камеры, которые образуют входной и выходной коллектора. Скрученные спирали помещаются в цилиндрический кожух. Внешние концы спиральных листов привариваются вдоль образующей обечайки. Для выхода каналов наружу в местах фиксации краев каналов в кожухе просверливаются отверстия, которые герметично закрываются входным и выходным коллекторами с присоединительными патрубками.

Движение потоков в спиральных теплообменниках происходит по криволинейным каналам, близким по форме к концентрическим окружностям. Направление векторов скоростей движения потоков постоянно претерпевают изменение. Геометрия каналов и разделительные шипы создают значительную турбулентность уже при низких скоростях потоков, при этом улучшается теплопередача и уменьшается загрязнение.

Это обеспечивает компактность конструкции спиральных теплообменников, которые могут быть интегрированы с любой технологической линией, что значительно сокращает затраты на установку.

Рис. 22. Спиральные теплообменники

Конструкционные характеристики теплообменника и пластин

При расчете пластинчатого теплообменника нужно принимать во внимание, что в основу аппарата закладываются:

  • неподвижные и прижимные плиты,
  • патрубки (входные и выходные) с разнообразными соединениями,
  • монтажная подставка,
  • направляющие,
  • метизы с резьбой.

Энергия передается между теплоносителями через пластины, выполненные из устойчивых к ржавчине инертных материалов. Последние обрабатываются методом штамповки, их толщина варьируется в пределах 0,4-1 мм. В собранном виде узел представляет собой плотно прилегающие тонкие панели, в которых предусмотрены щелевые каналы. У всех элементов с лицевой стороны есть контурное углубление, в которое закладывается резиновый уплотнитель (за счет него обеспечивается герметичное прилегание элементов).

Пластины единообразны по форме и материалу, они могут быть изготовлены из нержавеющей стали, титана, тугоплавких сплавов (выбирают в зависимости от сферы применения). Для производства уплотнителей используются сложные полимеры на базе синтетического каучука, их можно эксплуатировать с гликолем и неагрессивными средами, паром и высокотемпературными жидкостями, нефтесодержащими и масляными теплоносителями.

Условия эксплуатации


Битермический теплообменник необходимо чаще промывать

Приобретать котел с таким теплообменником стоит только при уверенности в достаточно хорошем качестве воды, используемой в роли теплоносителя. Обязательно нужно поставить систему фильтров и умягчителей, ведь у устройства низкая ремонтопригодность. Не следует пренебрегать этим несложным шагом, чтобы минимизировать вероятность нужды в обращении в мастерскую. В документации, прилагаемой к котлу, указывают требования к теплоносителю. Нужно проверить, что вода в местности соответствует им.

При выходе обменника из строя надлежит обратиться в сервисный центр. На практике иногда оказывается, что ремонтники берутся за работу с такими устройствами неохотно и без гарантий, и в итоге приходится покупать новое.

Конструкция легко засоряется сажей, на ней скапливается известковый налет. Это снижает КПД – одно из основных ее преимуществ перед раздельными вариантами. Целесообразно периодически (каждые 2 года) проводить чистку обменника с насосом под давлением. Перед ее проведением нужно проконсультироваться в техцентре относительно состава раствора и технологии проведения процедуры. Ошибки в этом деле легко приводят к разгерметизации, при таком инциденте теплообменник нуждается в замене. Хорошо, если есть возможность пригласить мастера на дом – это позволит получить квалифицированную консультацию без демонтажа котла.

Классификация

Классификация теплообменников предусматривает их деление на такие виды:

  • пластинчатые;
  • трубчатые.

Пластинчатые устройства включают набор пластин с волнистыми каналами со штамповкой и поверхностями, предназначенными для циркуляции жидкостей. Пластины соединены при помощи прорезиненных прокладок и стяжек. Преимущества подобных устройств – легкость в применении и компактность.

Пластинчатые теплообменники находят все более широкое применение. Сфера их использования не ограничивается только промышленным оборудованием, возможен также монтаж этих устройств в жилых домах для монтажа отопительных систем.

Пластинчатые теплообменники классифицируются на группы:

  • неразборные (они же сварные и паяные);
  • полусварные;
  • разборные.

Разборные устройства наиболее популярны. В них пластины разделены при помощи резиновых уплотнителей. Установка не занимает много времени, а эксплуатация не вызывает трудностей.

Классический вариант пластинчатых теплообменников имеет входные и выходные патрубки на поверхности передней плиты. Некоторые устройства имеют патрубки и на передней, и на задней панелях. Рабочие среды подсоединяются к патрубкам посредством фланцевых, резьбовых, стальных соединений. Некоторые модели имеют меньшее количество патрубков, тогда теплоносители подсоединяются непосредственно к плите.

Трубчатые теплообменники включают трубы малого диаметра, вваренные в другие трубы. Достоинствами устройства считается применение в условиях повышения давления.

По критерию способа теплообмена техника подразделяется на смесительную и поверхностную. Устройства смесительного типа передают тепло при плотномконтактировании носителей. Поверхностные теплообменники содержат два контура, в которых происходит перемещение сред с отличными температурами. Обмен теплом между ними возможен через поверхностные элементы пластин, стенок, листов или труб, которые выполнены из теплопроводящих материалов (нержавеющей или высокоуглеродистой стали, сплавов цветных металлов). Этот тип оборудования применяется в жилищно-коммунальном хозяйстве, промышленных предприятиях и в организации малого бизнеса.

Поверхностные теплообменники делятся виды: рекуперативные и регенеративные. Рекуперативные теплообменники характеризуются константным обменом тепла посредством стенок контуров при однонаправленном движении носителей. В регенеративных устройствах происходит поочередный контакт носителей с теплообменивающей поверхностью.

Рекуперативные теплообменники тоже классифицируются:

  1. Погружные. Принцип работы предусматривает движение одного теплоносителя по змеевику, который погружен в бак, содержащий второй жидкий теплоноситель. Модель отличается удобством в применении, характеризуется оптимальной стоимостью.
  2. Оросительные. Сфера применения – как конденсаторы в системах охлаждения. Теплобменники выглядят как змеевики из горизонтальных труб, которые размещены в вертикальной плоскости. У каждого ряда труб есть желоб, по которому на них стекает вода пониженной температуры. Вода, которая не испарилась, возвращается в систему благодаря насосу.
  3. Витые. Представляют собой систему труб, намотанных на сердечник. Компактны и высокоэффективны.
  4. Спиральные. Для оборудования характерен вид двух спиральных каналов, которыми обвита центральная перегородка. Предназначены для охлаждения и нагрева вязких жидкостей.
  5. Кожухотрубные. Трубные решетки присоединены к кожуху посредством сварки. В них закрепляются трубы. Крепление их происходит плотно при помощи развальцовки. Решетки закрыты крышками на шпильках, болтах и прокладках. Кожух включает штуцера (патрубки). Принцип работы заключен в циркуляции носителя тепла в межтрубном пространстве и по трубам. Увеличение теплоотдачи происходит при помощи оребрения.
  6. Секционные – последовательность секций, которые представляют собой кожухотрубные устройства.
  7. Пластинчатые. Включают набор пластин с волнистыми поверхностями со штамповкой и каналами для движения жидкостей. Возможна работа только при пониженном давлении.

Кожухотрубный теплообменник

Использование теплообменников в разных системах

Зачем нужен теплообменник? Область эксплуатации данных устройств можно разделить на несколько категорий: промышленность, коммунальное хозяйство и бытовые нужды. В каждом случае установка будет отличаться материалом исполнения, габаритами и мощностью, а также циркулирующими рабочими средами.

В системе отопления

Теплообменное оборудование в системе отопления позволяет значительно снизить расход ресурсов и добиться высокой степени контроля и регулировки процесса.

Система отопления может быть:

  • зависимой – система без теплообменника, когда тепло поступает от центрального теплового пункта регулярно в определенном количестве;
  • независимой – система с теплообменником, который позволяет регулировать количество поступающей энергии в соответствии с потребностями конечного потребителя.

Зачем нужен теплообменник в системе отопления? Он разделяет единую конструкцию на две части: одна из них относится к поставщику, а другая – к потребителю тепла. Аппарат служит промежуточной станцией, через которую проходит горячая вода с различными примесями: антифриз, масло и иные компоненты.

Теплообменник в ИТП

Использование пластинчатого оборудования для автоматизации индивидуального теплового пункта позволяет снизить потери энергии до 40% за счет высокой эффективности установки.

Независимая система отопления состоит из главного пункта, который распределяет тепло между разными объектами, и дополнительных теплообменников, установленных в индивидуальном тепловом пункте, откуда тепло поступает к конечному потребителю.
Наличие теплообменной конструкции в данной схеме – возможность для владельца квартиры регулировать температурный режим в помещении. Он не будет потреблять излишки тепла, что приводит к значительной экономии ресурсов.

В системе горячего водоснабжения

Усиление мощности кожухотрубного теплообменника возможно лишь за счет большей ширины и длины змеевика, что сказывается отрицательно на размерах корпуса. Громоздкая конструкция занимает много места и неудобна в монтаже. Пластинчатый теплообменник, габариты которого в 3 раза меньше, позволяет получить аналогичную производительность.

В котельной

Обыденная практика – использование в котельных двух видов теплообменников. Это средство защиты от гидроударов, химических и механических примесей, перепада высот. Независимые контуры позволяют осуществлять автономный контроль и регулировку каждой конструкции. В таком случае продолжительность эксплуатации котлов значительно увеличивается, накипь на стенках прибора не скапливается.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий