Функции основных элементов электрической цепи которые они выполняют при прохождении тока

Коммутационные электрические аппараты

Коммутационные электрические аппараты получили широкое распространение в различных отраслях промышленности. Трудно себе представить, как бы выполнялись различные задачи по эксплуатации и выполнению операций, связанных с электрическим оборудованием, без этого функционального устройства.

Коммутационный электрический аппарат служит для разъединения и замыкания электрической цепи при помощи контактной группы. Проще говоря, такое устройство можно назвать выключателем.

К основным видам представленного устройства относятся: рубильники, выключатели, контакторы, реле. Несмотря на то, что в этих приборах заложен практически один и тот же принцип работы, все они имеют ряд отличий друг от друга.

Рассмотрим каждый вид аппаратов в отдельности.

Рубильник относится к наиболее простому коммутационному аппарату. Аппарат приводится в действие вручную с помощью рукоятки. Такой вид устройств рассчитан на большие значения силы тока.

Выключатели имеют разные модификации. В промышленном применении, к наиболее распространенным видам таких устройств относятся масляные выключатели. Такие выключатели рассчитаны на напряжение до 220кВ.

Масло, в данном случае, служит для подавления/гашения, проходящей через него дуги электрического тока. Особого внимания заслуживают воздушные и электрогазовые выключатели.

Гашение дуги, то есть прекращение подачи электрического тока, происходит за счет подачи струи сжатого воздуха или электроотрицательного газа.

Кардинально новый способ размыкания токопроводящей линии воплощен в электромагнитных выключателях.

Принцип действия такого устройства заключается в следующем: электрическая дуга горит в нормальных условиях при атмосферном давлении – цепь включена.

Как только потребуется разомкнуть цепь, по направлению к дуге подается сильное магнитное поле. За счет воздействия магнитного поля, дуга начинает растягиваться и, в конечном итоге, расщепляется, размыкая тем самым токопроводящую линию.

Реле предназначено для размыкания и замыкания электрической цепи. Основным характерным свойством данного коммутационного аппарата является принципиально новый способ работы контактной пары.

Электромагнитное реле, как и в контакторе, под воздействием электрического тока, приводит в движение сердечник электромагнита с установленными на нем контактами, что приводит к замыканию цепи. Способ воздействия на контактную пару реле может быть не только электрическим, но также тепловым или акустическим.

Контакторы представляют собой разновидность электромагнитного реле. Основное назначение – включение и выключение токопроводящей линии силовых электрических цепей.

Контакторы могут применяться как в цепи переменного, так и постоянного электрического тока. Принцип работы контактора основан на электромагнитном эффекте.

Сердечник электромагнита контактора под действием электрического тока увлекает за собой подвижный контакт, который, вследствие такого перемещения, прижимается к неподвижному контакту и цепь замыкается.

Как только подача тока прекращается, сердечник возвращается в свое первоначальное положение и контакты размыкаются.

Разница между последовательным и параллельным соединением, преимущества и недостатки

Принципиальные отличия между последовательным и параллельным соединение проводников по ключевым электротехническим параметрам приведены в таблице:

Параметр/тип соединенияПоследовательноеПараллельное
ЭлектросопротивлениеРавняется сумме электросопротивлений всех электропотребителей.Меньше значения электросопротивления каждого отдельного из подключенных электроприборов.
НапряжениеРавняется совокупному вольтажу всех электропотребителей.Одинаковая величина на всех участках электроцепи.
Сила токаОдинаковая величина на всех участках электроцепи.Равняется совокупному значению токов на каждом из приборов.

За счет своих особенностей каждый из типов сборки цепей имеет свои преимущества и недостатки. Это позволяет использовать данные способы для решения разных электротехнических задач.

Плюсы и минусы последовательного соединения

Основными преимуществам электроцепей из последовательно соединенных приборов являются их следующие особенности:

  • простота проектирования и построения схемы;
  • низкая стоимость комплектации;
  • возможность подключения приборов, рассчитанных на меньшее рабочее напряжение, по сравнению с номинальным напряжением сети;
  • выполнение функции регулирования тока – обеспечивает равномерные нагрузки на все приборы.

Однако у этого способа компоновки электросхемы есть и серьезные недостатки. Главным из них является ненадежность цепи из последовательно соединенных проводников. При выходе из строя любого из подключенных приборов, происходит отключение всей цепи.

Кроме того, минусом является снижение напряжения при увеличении количества подключенных потребителей. Примером может служить последовательное соединение нескольких ламп. Чем больше осветительных приборов подключено таким способом к источнику электропитания, тем менее яркий свет они будут давать.

Плюсы и минусы параллельного соединения

При использовании параллельного соединения проводников обеспечиваются такой набор преимуществ:

  • стабильность напряжения на электроприборах, вне зависимости от их числа;
  • возможность включения или отключения отдельных участков в нужный момент без нарушения работы всей электроцепи;
  • надежность – при выходе одного или нескольких компонентов из строя сама электроцепь продолжает сохранять работоспособность.

Недостатком является более сложный расчет и сложная схема, использование которой повышает стоимость комплектации электросети.

Не допускается подключение приборов, с номинальным рабочим вольтажом меньше сетевого. Параллельное соединение аккумуляторов с разным значением вольтажа связано с перетеканием тока в АКБ с меньшей его величиной, что может вызывать ускоренный износ батареи.

Для чего рисуют точки на схемах

Чтобы обозначить соединение элементов на схемах, используют точки. Нарисованная точка указывает на наличие контакта между токоведущими проводниками.

Ставьте точку там, где проводники соединяются

На следующем рисунке приведен пример использования точек на простых схемах, состоящих из батареек и лампочек. Рисунок 11а содержит соединение нескольких проводящих дорожек. Благодаря соединениям заряды во время протекания тока могут перемещаться из одного проводника в другой.

При построении электрических схем применяют различные способы соединения элементов, наиболее распространенные — последовательное и параллельное соединение, а так же, смешанное.

Две лампы подключены к общему источнику тока. Б) – каждая лампа подключена с своему собственному источнику, проводники не соединяются

А представлено пересечение изолированных проводников. Соединений между такими проводниками нет и, ток из одного проводника во второй проводник проникать не будет.

Похожие файлы

Сумма напряжений на отдельных участках цепи при проходе по любому пути от входа к выходу равна полному приложенному напряжению. Последовательное соединение источников тока Разность потенциалов между положительным полюсом последнего источника и отрицательным полюсом первого будет равна сумме разностей потенциалов между полюсами каждого источника.
Диод полупроводниковый Резистор переменный Участок электроцепи, вдоль которого протекает один и тот же ток, называется ветвью. Все резисторы можно заменить одним эквивалентным резистором.
Последовательное соединение резисторов Когда несколько проводников или резисторов соединены последовательно рис. В любом узле, т. Это является разностью потенциалов на резисторе.
Распечатать Прежде чем разобраться в том, что такое схема электрической цепи, необходимо ввести несколько определений: Параметр электрической цепи — это число, которое устанавливает зависимость тока и напряжения на каком-то участке цепи на рисунке 1a r — это сопротивление, на рисунке 1б L — это индуктивность, на рисунке 1в C — это емкость. Примером параллельного соединения проводников служит соединение потребителей электрической энергии в квартире. Поэтому в вольтметре последовательно катушкам гальванометра включено некоторое сопротивление рис. Силы тока на всех проводниках будут одинаковыми.
Популярными стали схемы замещения пассивных и активных элементов во время работы. Если взять полупроводники , то среди них есть образцы с отрицательным и с положительным температурным коэффициентом сопротивления. Она целиком описывает процесс работы устройства, показывает все элементы цепи и то, как они взаимодействуют между собой.

Типы электрических цепей

Выводы зажимы источника и приемника энергии соединены между собой двумя проводами. Примерами таких нелинейных цепей, анализируемых как линейные, являются практически любые электронные устройства, работающие в линейном режиме и содержащие нелинейные активные и пассивные компоненты усилители, генераторы и др.

А величина напряжения также вычисляется по общим законам. При пользовании выключателем, на его контактах образуется искра. Поэтому в промышленных условиях целесообразно к электродвигателям параллельно подключать конденсаторы, которые будут компенсировать сопротивление с индуктивностью. Влияние схемы соединения на новогоднюю гирлянду После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Пример подобной схемы электрической цепи приведен на следующем рисунке: Дополнительные материалы по теме: Схема электрической цепи.

Элемент электрической цепи — какое-либо устройство, которое является частью электрической цепи и выполняет отдельную задачу. Полная активная мощность, выделяемая активным двухполюсником,. К ним относятся транзисторы , микросхемы, тиристоры и много других видов, являющихся своеобразными электронными ключами. Часто ВАХ изображают графически в декартовых координатах. По этому признаку в электротехнике электрические цепи разделяют на контуры цепей.
Сборка электрической цепи и измерение силы тока в ней #ФизиканскиеЛьвы2018

Пример реальной цепи

Самую простую электрическую цепь можно сделать самостоятельно. Её часто собирают на уроке физики. При этом не стоит опасаться поражения током, так как в ней будет использоваться низковольтный источник напряжения. Но всё же перед тем как приступить к сборке, следует знать о коротком замыкании. Под ним понимают состояние, при котором происходит закорачивание выхода.

Другими словами, вся энергия источника тока оказывается приложенной к нему же. В результате разность потенциалов снижается до нуля, а в цепи возникает максимальная сила тока. Непреднамеренное короткое замыкание может привести к выходу из строя генератор и радиодетали. Именно для защиты от этого пагубного воздействия в цепи ставят предохранитель.

Схема для самостоятельного повторения будет представлять собой узел управления освещением. Для её сборки необходимо подготовить:

Источник питания на 12 вольт. Это может быть аккумулятор, регулируемый лабораторный блок, батарейки. Главное, чтобы источник смог выдавать нужное напряжение. Например, нужную величину можно получить соединив последовательно несколько батареек со стандартным номиналом 1,5 В (1,5 * 4 = 12 В).
Лампочка

Подойдёт накаливания
Здесь важно обратить внимание на её характеристики. Она должна быть рассчитанной на нужное напряжение.
Ключ
Это обыкновенный выключатель, имеющий два устойчивых состояния — разомкнутое и замкнутое.
Провода

В сборке можно использовать любые медные проводники сечением от 0,25 мм 2 .

Электрическая цепь включает (в общем случае): источник питания, рубильник (выключатель), соединительные провода, потребителей. Обязательно сформируйте замкнутый контур. В противном случае по цепи не сможет течь ток. Электрическими не принято называть контуры заземления, зануления. Однако по сути считаются таковыми, иногда здесь течет ток. Замыкание контура при заземлении, занулении обеспечивается посредством грунта.

Источники питания. Внутренняя, внешняя электрическая цепь

Для образования упорядоченного движения носителей заряда, формирующего ток, потрудитесь создать разность потенциалов на концах участка. Достигается подключением источника питания, который в физике принято называть внутренней электрической цепью. В противовес прочим элементам, составляющим внешнюю. В источнике питания заряды движутся против направления поля. Достигается приложением сторонних сил:

  1. Обмотка генератора.
  2. Гальванический источник питания (батарейка).
  3. Выход трансформатора.

Напряжение, формируемое на концах участка электрической цепи, бывает переменным, постоянным. Сообразно в технике принято контуры делить соответствующим образом. Электрическая цепь предназначена для протекания постоянного, переменного тока. Упрощенное понимание, закон изменения упорядоченного движения носителей заряда воспринимается сложным. С трудом понимаем, переменный в цепи ток или постоянный.

Род тока определен источником, характером внешней электрической цепи. Гальванический элемент дает постоянное напряжение, обмотки (трансформаторы, генераторы) – переменное. Связано с протекающими в источнике питания процессами.

Сторонние силы, обеспечивающие движения зарядов, называют электродвижущими. Численно ЭДС характеризуется работой, совершаемой генератором для перемещения единичного заряда. Измеряется вольтами. На практике для расчета цепей удобно делить источники питания двумя классами:

  1. Источники напряжения (ЭДС).
  2. Источники тока.

В действительности неизвестны, имитацию пытаются создать практики. В розетке ожидаем увидеть 230 вольт (220 вольт по старым нормативам). Причем ГОСТ 13109 однозначно устанавливает пределы отклонения параметров от нормы. В быту пользуемся источником напряжения. Параметр нормируется. Величина тока не играет значения. Напряжение подстанции круглые сутки стремятся сделать постоянным вне зависимости от текущего запроса потребителей.

В противовес источник тока поддерживает заданный закон упорядоченного движения носителей заряда. Значение напряжения роли не играет. Ярким примером подобного рода устройств выступает сварочный аппарат на базе инвертора. Каждый знает: диаметр электрода прочно связан с толщиной металла, прочими факторами. Чтобы процесс сварки шел правильно, приходится с высокой степенью постоянства поддерживать ток. Задачу решает электронный блок на основе инвертора.

Ток, напряжение бывают постоянными, переменными. Закон изменения параметра роли не играет

Неважно, подключать ли электрическую цепь к источнику постоянного, переменного напряжения. Однако важно выдержать правильный размер параметра

К примеру, действующее значение ЭДС.

Условные обозначения источников электрической энергии и элементов цепей

Условное обозначение Элемент
Идеальный источник ЭДС
Е – электродвижущая сила, Е = const
Ro = 0 – внутреннее сопротивление
Идеальный источник тока I = const
Rвн- внутреннее сопротивление источника тока,
Rвн>>Rнаг
Активное сопротивление
R = const
Индуктивность L = const
Емкость С = const

К химическим источникам тока относят гальванические элементы и аккумуляторы. В них заряды переносятся в результате химических реакций. При этом в гальваническом элементе реагенты расходуются необратимо, а в аккумуляторе они могут восстанавливаться путем пропускания через аккумулятор электрического тока противоположного направления от других источников.

Источники электрической энергии относятся к группе активных элементов электротехнических устройств. Если Rо=0 и электродвижущая сила (ЭДС) Е=const, то источник называется идеальным. Аккумуляторная батарея по своим параметрам близка к идеальному источнику ЭДС.

К группе пассивных элементов относятся: активное сопротивление R, индуктивность L и емкость С.

В электротехнических устройствах одновременно протекают три энергетических процесса:

1 В активном сопротивлении в соответствии с законом Джоуля – Ленца происходит преобразование электрической энергии в тепло.

Мощность, по определению равна отношению работы к промежутку времени, за который эта работа совершается. Следовательно, мощность тока для участка цепи

p = A/t = ui

Полная мощность, вырабатываемая генератором, равна

где R- полное сопротивление замкнутой цепи, называемое омическим или активным;

Р, I – мощность и ток в цепи постоянного тока.

р, i, и – мгновенные значения активной мощности, тока и напряжения в цепи переменного тока,

g – активная проводимость или величина, обратная сопротивлению g=1/R измеряется в сименсах (См).

В соответствии с законом сохранения энергии работа есть мера изменения различных видов энергии. Так, в электродвигателе за счет работы тока возникает механическая энергия, протекают химические реакции и т. д. На резисторах происходит необратимое преобразование энергии электрического тока во внутреннюю энергию проводника.

Если в проводнике под действием тока не происходит химических реакций, то температура проводника должна измениться. Изменение внутренней энергии проводника (количество теплоты) Q равно работе А, которую совершает суммарное поле при перемещении зарядов:

Q = А = uit

Воспользовавшись законом Ома, получим два эквивалентных выражения:

Это и есть закон Джоуля – Ленца.

Если нужно сравнить два резистора по характеру тепловых процессов, происходящих в них, то нужно предварительно выяснить: протекает ли по ним одинаковый ток или они находятся под одинаковым напряжением?

Если по двум резисторам протекают одинаковые токи, то согласно формуле за одно и то же время больше возрастает внутренняя энергия резистора с большим сопротивлением. С таким случаем мы встречаемся, например, в цепи с последовательным соединением резисторов. Последнее обстоятельство следует учитывать при включении в сеть нагрузки (электроплиток, утюгов, электродвигателей и т. д.). Сопротивление подводящих проводов при этом должно быть значительно меньше, чем сопротивление нагрузки. При несоблюдении этого условия в проводах выделится большое количество теплоты, что может привести к их загоранию.

Если же оба резистора находятся под одинаковым напряжением, то согласно формуле быстрее будет нагреваться резистор с меньшим сопротивлением. Такой эффект, в частности, наблюдают при параллельном соединении резисторов.

Термин “сопротивление” применяется для условного обозначения элемента электрической цепи и для количественной оценки величины R.

Сопротивление измеряется в омах (Ом). 1 Ом – это сопротивление проводника, сила тока в котором равна 1 А, если на концах его поддерживается разность потенциалов 1 В:

1 Ом = 1 В/1 А

Электрическое сопротивление R материалов с изменением температуры меняется. Сопротивление металлических проводников линейно возрастает с температурой. У полупроводников и электролитов с увеличением температуры удельное сопротивление уменьшается, причем нелинейно.

Для сравнения проводников по степени зависимости их сопротивления от температуры t вводится величина a, называемая температурным коэффициентом сопротивления. Отсюда

Для практических расчетов в электрических цепях величину R можно принимать постоянной. В этом случае зависимость напряжения на сопротивлении R от силы тока (вольт-амперная характеристика) будет называться линейной. Электрические цепи, в которые включены постоянные по величине сопротивления, также будут линейными.

Условия работы источников тока

Любой источник тока работает при определенных условиях. В отсутствие химической реакции внутри элементов не смогут образовываться заряженные частицы. Если будет отсутствовать анод и катод, то движения частиц не возникнет даже при наличии реакции.

В аккумуляторах происходит похожий процесс, но толчком для возникновения химической реакции является замыкание во внешней электрической цепи. Заряженные элементы начинают двигаться от анода к катоду и наоборот, создавая постоянный поток.

Идеальный и реальный

Световые типы не могут работать без наличия источника света. КПД зависит от типа используемого диэлектрического элемента. Дополнительно необходимо иметь в наличии приспособление ля преобразования полученной энергии.

Тепловой вариант не будет работать, если в его основу входит 1 тип металла. Если будет отсутствовать источник тепла, то ни о каком возникновение движущихся частиц не может быть и речи.

Источники

Для выработки электрической энергии требуется выбрать источник тока, соответствующий потребностям в конкретной сфере применения. Существует несколько вариантов таких приспособлений, каждый из которых имеет определенное строение, принцип работы и индивидуальные технические показатели.

Прямое и обратное напряжение

Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:

  1. Прямое напряжение – это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
  2. Обратное напряжение – это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.

Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.

Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.

Классификация электрических аппаратов

В большинстве своём работа электрических аппаратных устройств не ограничивается выполнением какой-то одной конкретной функции, а, напротив, связана с реализацией целого набора действий. В связи с этим возникает определенная трудность в разделении таких устройств на конкретные виды и группы.

Для того чтобы провести классификацию электрических аппаратов, важно выделить главные функциональные особенности конкретных типов электрического оборудования:

  1. Коммутационные устройства. Такое оборудование служит для размыкания и замыкания цепей электрического тока. К таким устройствам относятся различные рубильники, выключатели, разъединители.
  2. Устройства защиты. Аппараты предохраняют проводящие элементы электрических цепей от перепадов напряжения, повышенной нагрузки сети и замыканий. Представленные функции защиты могут быть реализованы в различных видах предохранителей и реле.
  3. Аппараты, регулирующие запуск электрических машин. Устройства подобного рода предназначены для обеспечения плавного пуска и остановки промышленных потребителей электрического тока. Аппараты регулируют скорость вращения якоря двигателя. К подобным устройствам можно отнести пускатели, реостаты, контакторы.
  4. Ограничивающие аппараты. Подобные устройства называют реакторами и разрядниками, они обладают функцией ограничения токов короткого замыкания и перенапряжения.
  5. Аппараты, обеспечивающие контроль различных параметров электрических цепей. Самые распространенные виды таких устройств – датчики и реле.
  6. Аппараты, позволяющие проводить корректировку и изменение различных параметров электрического оборудования. К таким аппаратам относятся регуляторы и стабилизаторы.
  7. Измерительные аппараты. Функция данного оборудования сводится к тому, чтобы обеспечить изоляцию линии первичной коммутации от цепей измерительных приборов и приборов защиты.
  8. Устройства для проведения работ механического характера. Основным элементом таких устройств является электромагнит, призванный выполнять конкретные функции: подъемный электромагнит, электромагнитный тормоз.

Каждое электрическое устройство имеет в своем составе три основных элемента:

  • воспринимающий;
  • преобразующий;
  • исполнительный элемент.

Если исходить из принципа действия воспринимающего элемента устройства, то электрические аппараты подразделяются на электромагнитные, индукционные, полупроводниковые, магнитные.

В зависимости от принципа действия исполнительного элемента, электрические устройства подразделяются на контактные и бесконтактные аппараты.

Существует еще ряд принципиальных различий, связанных с особенностями эксплуатации рассматриваемого оборудования, которые позволяют провести разделение электрических устройств на определенные группы. Электрические аппараты могут быть рассчитаны на высокое или низкое напряжение. По продолжительности работы, такие устройства могут работать в режиме кратковременной или продолжительной эксплуатации.

Если принимать во внимание принцип управления, то можно выделить два основных вида устройств: с автоматическим и ручным управлением

Физические величины, характеризующие цепь

Величин, которыми можно описать любую электрическую цепь несколько. Основными из них являются:

  1. Напряжение – U (измеряется в вольтах (В)).
  2. Сила тока – I (измеряется в амперах (А)).
  3. Сопротивление – R (измеряется в омах (Ом)).
  4. Мощность – P (измеряется в Ваттах (Вт)).
  5. Ёмкость – С (измеряется в Фарадах (Ф).

Знание формул позволяет проводить практические расчеты. К примеру, сопротивление резистора зависит не только от тока, но и от напряжения. Формула, которая это отражает, называется Законом Ома для участка цепи и выглядит так:

I=U/R, где

  • I – сила тока;
  • U – напряжение;
  • R – сопротивление.

Если резистор имеет постоянное сопротивление независимо от того, какой ток по нему протекает, он имеет название «линейный элемент».

Когда по резистору протекает ток, его сопротивление увеличивается из-за увеличения колебания на молекулярном уровне кристаллической решетки в проводнике. Колебания мешают движению электронов, и в результате энергия теряется понапрасну. Для того чтобы предотвратить перегорание резистора в цепь последовательно ему часто устанавливают предохранитель. Он содержит внутри легкоплавкий проводник, рассчитанный на перегорание при превышении параметров. Перегорая, предохранитель уберегает от повреждения всю схему и экономит, порой, часы при ремонте, так как поменять предохранитель легче, чем искать поврежденный компонент среди десятков таких же.

Узнать больше об электрических цепях можно с помощью видео:

  • Кто изобрел электрическое уличное освещение
  • Статическое электричество и защита от него
  • 6 простейших способов определения полярности светодиодов

Как производится расчет электрических цепей

Путь вычисления делится на множество способов, которые используются на практике:

  • метод, основанный на законе Ома и правилах Кирхгофа;
  • способ определения контурных токов;
  • прием эквивалентных преобразований;
  • методика измерений сопротивлений защитных проводников;
  • расчет узловых потенциалов;
  • метод идентичного генератора, и другие.

По условию задачи известны сопротивления подсоединенных к цепи резисторов R1, R2, R3, R4, R5, R6 (без учета сопротивления амперметра). Необходимо вычислить силу токов J1, J2…J6.

На схеме есть три последовательных участка. Причем второй и третий имеют разветвления. Сопротивления этих участков обозначим, как R1, R’, R”. Тогда общее сопротивление равно сумме сопротивлений:

R = R1 + R’ + R”, где

R’ – общее сопротивление параллельно подключенных резисторов R2, R3, R4.

R” – общее сопротивление резисторов R5 и R6.

Используя закон параллельного соединения, вычисляем сопротивления R’ и R”.

1/R’ = 1/R2 + 1/R3 + 1/R4

1/R” = 1/R5 + 1/R6

Определить силу тока в неразветвленной цепи, зная общее сопротивление при заданном напряжении, можно по следующей формуле:

I = U/R, тогда I = I1

Для вычисления силы тока в отдельно взятых ветвях, нужно определить напряжение на участках последовательных цепей по закону Ома:

U1 = IR1; U2 = IR’; U3 = IR”;

Зная напряжение конкретных участков, можно вычислить силу тока на отдельных ветвях:

I2 = U2/R2; I3 = U2/R3; I4 = U2/R4; I5 = U3/R5; I6 = U3/R6

Иногда необходимо узнать сопротивление участков по известным параметрам напряжения, силы токов, сопротивления других участков или сделать расчет напряжения по имеющимся данным сопротивления и силе тока.

Источники

  • https://formulki.ru/electromagnetism/sostavnye-chasti-elektricheskoj-tsepi
  • https://panelektro.ru/ampery/kak-chitat-elektricheskie-shemy.html
  • http://www.sxemotehnika.ru/elektricheskaya-tsep-i-ee-elementi.html
  • https://tokzamer.ru/bez-rubriki/shemy-soedineniya-elektricheskoj-cepi
  • https://habr.com/ru/post/451158/
  • https://StrojDvor.ru/elektrosnabzhenie/ponyatie-elektricheskoj-cepi-i-ee-sostavnye-chasti/
Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий