Формула эдс силы тока мощности

ОСНОВНЫЕ ФОРМУЛЫ ЭЛЕКТРОТЕХНИКИ

Математическая зависимость основных величин для закона Ома приведена в табл.1

Таблица 1. закон Ома для участка цепи

Закон Ома для замкнутой цепи (рис. 1) , где Е – эдс источника тока; — внутреннее сопротивление источника тока; Z – суммарное сопротивление внешней цепи.

Первый закон Кирхгофа: алгебраическая сумма токов в узловой точке электрической цепи рана нулю: (рис. 2,а).

Рис.1 замкнутая цепь(по закону Ома)
Рис.2 схемы к закону Кирхгофа: а — узловая точка (к I закону Кирхгофа), б – замкнутый контур (ко II закону Кирхгофа)

Таблица 2. формулы для определения сопротивлений, индуктивностей и емкостей

Таблица 9. переходные процессы при включении резисторов R и конденсаторов С

Второй закон Кирхгофа: алгебраическая сумма всех эдс в замкнутом контуре равна алгебраической сумме падений напряжений на всех элементах, составляющих цепь: (рис. 2,б)

Закон сложения сопротивлений и проводимостей: при последовательном соединении суммируются сопротивления, при параллельном соединении – проводимости. Расчетные формулы для определения сопротивления R, индуктивностей L и емкостей С приведены в таблице 2.

Переходные процессы возникают в электрической цепи, содержащей индуктивности L и емкости С в период перехода от одного установившегося режима к другому за счет постепенного изменения энергий электрического и магнитного полей.

Первый закон коммутации: в начальный момент после коммута­ции ток в индуктивности остается таким же, каким он был непосред­ственно перед коммутацией, а затем плавно изменяется.

Второй закон коммутации:в начальный момент после коммута­ции напряжение на емкости остается таким же, каким было непо­средственно перед коммутацией, а затем плавно изменяется. Расчет­ные формулы напряжения и тока при замыкании цепи приведены втабл. 3.

ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ

Рис. 3. синусоидальное колебание

Мгновенные значения электрических колебаний переменного тока и напряжения математически записываются в виде ; где , где , -амплитуда колебаний; — круговая частота; t – время; — начальная фаза. Графическое колебание показано на рис. 3. Основные зависимости параметров синусоидальных колебаний приведены в табл. 4.

Таблица 4. основные зависимости параметров синусоидальных колебаний

ПараметрЗависимость
Круговая частота, рад/с
Частота колебаний, Гц
Период колебаний, с

Действующие значения синусоидальных тока и напряжения определят по формулам или по показаниям прибора

ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ ПОСТОЯННОГО ТОКА

Электрическая цепь состоит из источника электрической энергии, соединительных проводов и приемников электрической энергии.

Электрический ток, протекающий в электрической цепи, представляет собой направленный поток электронов, возникающий под действием электрического поля.

Силу тока измеряют в амперах (а). Один ампер — это сила то­ка, при которой через поперечное сечение проводника каждую секунду проходит один кулон электричества. В одном кулоне содержится 6,3·1018 зарядов электрона.

Электродвижущая сила (э. д. с.) источника электрической энергии включенного в цепь, определяется работой, совершаемой им при перемещении электрических зарядов по всей цепи.

Напряжение— часть электродвижущей силы, определяемая работой источника электрической энергии, которая совершается им при перемещении электрических зарядов на участке цепи. Мощность тока определяется работой, производимой (или потребляемой) в одну секунду, и измеряется в ваттах (вт).

Основные и производные формулы для расчета электрических цепей приведены в табл. 5 и 6.

Таблица 5

Основные формулы



infopedia.su

Что такое ЭДС в электротехнике?

В электротехнике ЭДС характеризует источники питания и создаёт и поддерживает в течение длительного периода времени разность потенциалов. Численно ЭДС равна работе, которую должны совершить либо сторонние силы, чтобы переместить положительный заряд внутри источника, либо сам источник, чтобы провести заряд по цепи. Таким образом, формула для вычисления ЭДС имеет вид:

E = A / q,

где E – ЭДС,

А – работа,

q – заряд.

ЭДС необходима для поддержания в цепи постоянного тока, причём в технике применяется несколько видов ЭДС.

ВидОбласть применения
ХимическаяБатарейки и аккумуляторы
ТермоэлектрическаяХолодильники и термопары
ИндукционнаяЭлектродвигатели, генераторы и трансформаторы
ФотоэлектрическаяФотоэлементы
ПьезоэлектрическаяПьезоэлементы, датчики, кварцевые генераторы

СПРАВКА: в теории существует идеальный источник ЭДС – генератор с нулевым внутренним сопротивлением, мощность которого приравнивается к бесконечности.

Что такое мощность в электричестве: просто о сложном

Вспомнилась былина об Илье Муромце, когда он приложил всю свою мощь к соловью разбойнику. У бедолаги сразу посыпались искры из глаз, как пламя с верхней картинки на проводке с неправильным монтажом.

Простыми словами: мощность в электричестве — это силовая характеристика энергии, которой оценивают, как способности генераторных установок ее вырабатывать, так возможности потребителей и транспортных магистралей.

Все эти участки должны быть точно смонтированы и налажены для обеспечения безопасной работы. Как только в любом месте возникает неисправность, так сразу развивается авария во всей схеме.

Если говорить о домашнем электрическом оборудовании, то приходится постоянно соблюдать баланс между:

  1. включенными в сеть приборами;
  2. конструкцией проводов и кабелей;
  3. настройкой защитных устройств.

Только комплексное решение этих трех вопросов может обеспечить безопасность проводки и жильцов.

Как рассчитать электрическую мощность в быту

Формулы расчета мощности в электричестве позволяют выполнить качественную оценку безопасности каждого из перечисленных выше пунктов.

Пользоваться ими не сложно. Я уже приводил в предыдущих статьях шпаргалку электрика, где они помещены в наглядной форме для цепей постоянного тока.

Они полностью справедливы для активной составляющей мощности переменного тока, совершающей полезную работу. Кстати, кроме нее есть еще и бесполезная — реактивная, связанная с потерями энергии. Ее описанию посвящен второй раздел.

Такие вычисления удобно делать с помощью онлайн калькулятора. Он избавляет от рутинных математических вычислений и арифметических ошибок.

При любом из способов для расчета активной мощности требуется знать две из трех электрических величин:

  1. силу тока I;
  2. приложенное напряжение U;
  3. сопротивление участка цепи R.

Как измерить электрическую мощность дома

Существует еще одна возможность оценки активной мощности: ее измерение в действующей схеме специальными приборами: ваттметрами.

Точные замеры может обеспечить промышленный лабораторный ваттметер. Он изготавливается как прибор, работающий на аналоговых сигналах,так и с помощью цифровых технологий.

В бытовой проводке точные вычисления не нужны. Для нее выпускаются различные виды более простых ваттметров.

Популярностью пользуются приборы, которые можно вставить в розетку и подключить к ним шнур питания от потребителя, включить их в работу и сразу снять показания на дисплее в ваттах.

Их так и называют: ваттметр розетка. Они измеряют чисто активную мощность переменного тока.

Такие приборы избавляют электрика от выполнения сложных операций под напряжением, когда требуется замерять:

  • действующее напряжение;
  • силу тока;
  • угол сдвига фаз между векторами тока и напряжения.

Потом все данные дополнительно требуется вводить в формулу расчета мощности по току и напряжению, делать по ней вычисления.

Этот метод можно упростить, если внимательно наблюдать за показаниями электрического счетчика индукционной системы с вращающимся диском. Он считает совершенную работу: потребленную мощность за определенную время.

Однако скорость вращения диска как раз и характеризует величину потребления. Надо просто посчитать сколько раз он обернется за минуту и перевести в ватты по табличке, расположенной на корпусе.

Что такое электродвижущая сила — определение, физический смысл

Определение

Электродвижущая сила (ЭДС) — физическая величина, описывающая работу любых сил, которые действуют в квазистационарных цепях постоянного или переменного тока, за исключением диссипативных и электростатических сил.

Для определения силы тока Георг Симон Ом использовал принцип крутильных весов Кулона. На длинной тонкой нити подвешено горизонтальное коромысло с заряженным шариком на конце. Второй заряд закреплен на cпицe, пропущенной сквозь крышку весов. При их взаимодействии коромысло поворачивается. Вращение головки в верхней части весов закручивало нить, возвращая коромысло в исходное состояние. По углу закручивания можно рассчитать силу взаимодействия зарядов в зависимости от расстояния между ними.

Ом по величине угла закрутки судил о силе тока I в проводнике, т. е. количестве электричества, перенесенном через поперечное сечение проводника за единицу времени. В качестве основной характеристики источника тока Ом брал величину напряжения \varepsilon на электродах гальванического элемента при разомкнутой цепи. Эту величину \(\varepsilon\) он назвал электродвижущей силой, сокращенно ЭДС.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

В чем измеряется в системе СИ, как обозначается на схеме

Электродвижущая сила в системе СИ измеряется в вольтах.

На схеме обозначение источника тока с ЭДС — две линии с плюсом и минусом, иногда круг.

«Электромагнитная индукция»

Электромагнитная индукция — это явление, которое заключается в возникновении электрического тока в замкнутом проводнике в результате изменения магнитного поля, в котором он находится. Это явление открыл английский физик М. Фарадей в 1831 г. Суть его можно пояснить несколькими простыми опытами.

Описанный в опытах Фарадея принцип получения переменного тока используется в индукционных генераторах, вырабатывающих электрическую энергию на тепловых или гидроэлектростанциях. Сопротивление вращению ротора генератора, возникающее при взаимодействии индукционного тока с магнитным полем, преодолевается за счет работы паровой или гидротурбины, вращающей ротор. Такие генераторы преобразуют механическую энергию в энергию электрического тока.

Вихревые токи, или токи Фуко

Если массивный проводник поместить в переменное магнитное поле, то в этом проводнике благодаря явлению электромагнитной индукции возникают вихревые индукционные токи, называемые токами Фуко.

Вихревые токи возникают также при движении массивного проводника в постоянном, но неоднородном в пространстве магнитном поле. Токи Фуко имеют такое направление, что действующая на них в магнитном поле сила тормозит движение проводника. Маятник в виде сплошной металлической пластинки из немагнитного материала, совершающий колебания между полюсами электромагнита, резко останавливается при включении магнитного поля.

Во многих случаях нагревание, вызываемое токами Фуко, оказывается вредным, и с ним приходится бороться. Сердечники трансформаторов, роторы электродвигателей набирают из отдельных железных пластин, разделенных слоями изолятора, препятствующего развитию больших индукционных токов, а сами пластины изготовляют из сплавов, имеющих высокое удельное сопротивление.

Электромагнитное поле

Электрическое поле, созданное неподвижными зарядами, является статическим и действует на заряды. Постоянный ток вызывает появление постоянного во времени магнитного поля, действующего на движущиеся заряды и токи. Электрическое и магнитное поля существуют в этом случае независимо друг от друга.

Явление электромагнитной индукции демонстрирует взаимодействие этих полей, наблюдаемое в веществах, в которых есть свободные заряды, т. е. в проводниках. Переменное магнитное поле создает переменное электрическое поле, которое, действуя на свободные заряды, создает электрический ток. Этот ток, будучи переменным, в свою очередь порождает переменное магнитное поле, создающее электрическое поле в том же проводнике, и т. д.

Совокупность переменного электрического и переменного магнитного полей, порождающих друг друга, называется электромагнитным полем. Оно может существовать и в среде, где нет свободных зарядов, и распространяется в пространстве в виде электромагнитной волны.

Классическая электродинамика — одно из высших достижений человеческого разума. Она оказала огромное влияние на последующее развитие человеческой цивилизации, предсказав существование электромагнитных волн. Это привело в дальнейшем к созданию радио, телевидения, телекоммуникационных систем, спутниковых средств навигации, а также компьютеров, промышленных и бытовых роботов и прочих атрибутов современной жизни.

Краеугольным камнем теории Максвелла явилось утверждение, что источником магнитного поля может служить одно только переменное электрическое поле, подобно тому, как источником электрического поля, создающим в проводнике индукционный ток, служит переменное магнитное поле. Наличие проводника при этом не обязательно — электрическое поле возникает и в пустом пространстве. Линии переменного электрического поля, аналогично линиям магнитного поля, замкнуты. Электрическое и магнитное поля электромагнитной волны равноправны.

Электромагнитная индукция в схемах и таблицах

(Явление электромагнитной индукции, опыты Фарадея, правило Ленца, закон электромагнитной индукции, вихревое электрическое поле, самоиндукция, индуктивность, энергия магнитного поля тока)

Дополнительные материалы по теме:

Конспект урока по физике в 11 классе «Электромагнитная индукция».

Следующая тема: «».

Работа сторонних сил

Работа электрического поля не входит в данное соотношение, так как в замкнутой цепи работа не совершается, следовательно, тепло идет только от внутренних сторонних сил. В данном случае электрическое поле перераспределяет тепло по всем участкам цепи.

Внешняя цепь может иметь не только проводник с R сопротивлением, но и механизм, потребляющий мощность. Такой случай говорит о том, что R эквивалентно сопротивлению нагрузки. Энергия, которая выделяется по внешней цепи, преобразуется в тепло и другие виды энергии.

Определение 3

Работа, совершаемая сторонними силами за единицу времени, равняется Pист=εI=ε2R+r. Внешняя цепь характеризуется мощностью P=RI2=εI-rI2=ε2R(R+r)2.

Коэффициентом полезного источника называют отношение η=PPист, записываемое как η=PPист=1-rεI=RR+r.

Рисунок 1.11.1 показывает зависимость Pист, полезной Р, выделяемой во внешней цепи, кпд η от тока I для источника с ЭДС, равной ε, и внутренним сопротивлением r. Изменение тока в цепи происходит в пределах от I=( при R=∞) до I=Iкз=εr( при R=).

Рисунок 1.11.1. Зависимость мощности источника Pист, мощности во внешней цепи Р и КПД источника η от силы тока.

Приведенные графики показывают, что максимальная мощность во внешней цепи может быть достигнута при R=rи запишется Pmax=ε24r. Формула тока в цепи будет иметь вид Imax=12Iкз=ε2r, где КПД источника не превышает 50%. При I→может достигаться максимальное значение КПД, тогда сопротивление R→∞. При коротком замыкании значение мощности Р=. Тогда она только выделяется внутри источника, что грозит перегревом, причем КПД обращается в ноль.

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

ЭДС электромагнитной индукции

29 августа 1831 года Майкл Фарадей открыл электромагнитную индукцию – явление возникновения электрического тока при движении замкнутого проводящего контура в магнитном поле или при изменении в течение времени этого поля.

Фарадей в ходе эксперимента обнаружил, что возникающая ЭДС зависит от скорости изменения магнитного потока через поверхность замкнутого контура, но не зависит от причины этого изменения.

Eинд = — dФ / dt,

где Eинд – ЭДС индукции,

Ф – магнитный поток, измеряемый в веберах (Вб),

t – время.

Знак дифференциала d характеризует изменение величин, а минус перед отношением отражает правило Ленца, согласно которому индукционный ток, вызванный ЭДС индукции, направлен таким образом, чтобы противодействовать изменению магнитного потока.

Ток, возникающий от ЭДС

Электродвижущая сила источника тока на то и движущая сила, что электроны от нее начинают двигаться, если замкнуть электрическую цепь. Их к этому принуждает ЭДС, пользуясь своей неэлектрической «половиной» природы, которая не зависит, все-таки, от половины, связанной с электронами. Так как считается, что ток в цепи течет от плюса к минусу (такое определение направления было сделано раньше, чем все узнали, что электрон — отрицательная частица), то внутри прибора с ЭДС ток делает движение завершающее — от минуса к плюсу. И всегда рисуют у знака ЭДС, куда направлена стрелочка – +. Только в обоих случаях — и внутри ЭДС источника тока, и снаружи, то есть в потребляющей цепи, — мы имеем дело с электрическим током со всеми его обязательными свойствами. В проводниках ток наталкивается на их сопротивление. И здесь, в первой половине цикла, имеем сопротивление нагрузки, во второй, внутренней, — сопротивление источника или внутреннее сопротивление.

Внутренний процесс работает не мгновенно (хотя очень быстро), а с определенной интенсивностью. Он совершает работу по доставке зарядов от минуса к плюсу, и это тоже встречает сопротивление…


Работа электрической батарейки

Сопротивление это двоякого рода.

  1. Внутреннее сопротивление работает против сил, разъединяющих заряды, оно имеет природу, «близкую» этим разъединяющим силам. По крайней мере, работает с ними в едином механизме. Например, кислота, отбирающая кислород у двуокиси свинца и замещающая его на ионы SO4-, определенно испытывает некоторое химическое сопротивление. И это как раз и проявляется как работа внутреннего сопротивления аккумулятора.
  2. Когда наружная (выходная) половина цепи не замкнута, появление все новых и новых электронов на одном из полюсов (и убывание их с другого полюса) вызывает усиление напряженности электростатического поля на полюсах аккумулятора и усиление отталкивания между электронами. Что позволяет системе «не идти вразнос» и остановиться на некотором состоянии насыщенности. Больше электронов из аккумулятора наружу не принимается. И это внешне выглядит как наличие постоянного электрического напряжения между клеммами аккумулятора, которое называется Uхх, напряжением холостого хода. И оно численно равно ЭДС — электродвижущей силе. Поэтому и единицей измерения ЭДС является вольт (в системе СИ).

Но если только подключить к аккумулятору нагрузку из проводников, имеющих отличное от нуля сопротивление, то немедленно потечет ток, сила которого определяется по закону Ома.  

Померить внутреннее сопротивление источника ЭДС, казалось бы, можно. Стоит включить в цепь амперметр и шунтировать (закоротить) внешнее сопротивление. Однако внутреннее сопротивление настолько низко, что аккумулятор начнет разряжаться катастрофически, вырабатывая огромное количество теплоты, как на внешних закороченных проводниках, так и во внутреннем пространстве источника.

Однако можно поступить иначе:

  1.  Измерить E (помним, напряжение холостого хода, единица измерения — вольт).
  2. Подключить в качестве нагрузки некоторый резистор и померить падение напряжения на нем. Вычислить ток I1.
  3. Вычислить значение внутреннего сопротивления источника ЭДС можно, воспользовавшись выражением для r  


Иллюстрация

Обычно способность аккумулятора выдавать электроэнергию оценивается его энергетической «емкостью» в амперчасах. Но интересно было бы посмотреть, какой максимальный ток он может вырабатывать. Несмотря на то, что, быть может, электродвижущая сила источника тока заставит его взорваться. Так как идея устроить на нем короткое замыкание показалась не очень заманчивой, можно вычислить эту величину чисто теоретически. ЭДС равно Uхх. Просто нужно дорисовать график зависимости падения напряжения на резисторе от тока (следовательно, и от сопротивления нагрузки) до точки, в которой сопротивление нагрузки будет равно нулю. Это точка Iкз, пересечения красной линии с линией координаты I, в которой напряжение U стало нулевым, а все напряжение E источника будет падать на внутреннее сопротивление.

Часто кажущие простыми основные понятия не всегда бывает можно понять без привлечения примеров и аналогий. Что такое электродвижущая сила, и как она работает, можно представить, только рассмотрев множество ее проявлений. А стоит рассмотреть определение ЭДС, как оно дается солидными источниками посредством умных академических слов — и все начинай с начала: электродвижущая сила источника тока. Или просто выбей на стене золотыми буквами:


Надпись

Где используются разные виды ЭДС?

  1. Пьезоэлектрическая применяется при растяжении или сжатии материала. С помощью нее изготавливают кварцевые генераторы энергии и разные датчики.
  2. Химическая используется в гальванических элементах и аккумуляторах.
  3. Индукционная появляется в момент пересечения проводником магнитного поля. Ее свойства применяют в трансформаторах, электрических двигателях, генераторах.
  4. Термоэлектрическая образуется в момент нагрева контактов разнотипных металлов. Свое применение она нашла в холодильных установках и термопарах.
  5. Фото электрическая используется для продуцирования фотоэлементов.

Определение и формула полезной мощности

Стоит рассмотреть понятие полезной мощности и формулу на примере электрической цепи. Та мощность, которую источник питания (ИП), в частности, тока, развивает в замкнутой цепи, будет полной мощностью.

Цепь включает в себя: источник тока, имеющий ЭДС (E), внешнюю цепь с нагрузкой R и внутреннюю цепь ИП, сопротивление которого R0. Формула полной (общей) мощности равна:

Здесь I – это значение тока, проходящего по цепи (А), а E – величина ЭДС (В).

Значит, формула примет вид:

Pобщ = E*I = (U + U0) *I = U*I + U0*I.

Видно, что значение произведения U*I равняется мощности, отдаваемой источником на нагрузке, и соответствует полезной мощности Pпол.

Величина, равная произведению U0*I, соответствует мощности, которая теряется внутри ИП на нагрев и преодоление внутреннего сопротивления R0. Это мощность потерь P0.

Подставляемые в формулу значения показывают, что сумма полезной и потерянной мощностей составляют общую мощность ИП:

Pобщ=Pпол+P0.

Важно!

При работе любого аппарата (механического или электрического) полезной мощностью будет та, которая останется для совершения нужной работы после преодоления факторов, вызывающих потери (нагрев, трение, противодействующие силы).

индукционный

ЭДС может возникать в электрическом, гравитационном или магнитном поле, а напряжение возникает только в электрическом поле.

Источник

В материалах по электротехнике и электронике часто можно встретить три физические величины, имеющие одну и ту же единицу измерения — Вольт: разность электрических потенциалов, электрическое напряжение и ЭДС — электродвижущая сила.

Чтобы раз и навсегда избавиться от путаницы в терминах, давайте разберемся, в чем же заключаются различия между этими тремя понятиями. Для этого подробно рассмотрим каждое из них по отдельности.

Разность электрических потенциалов

На сегодняшний день физикам известно, что источниками электрических полей являются электрические заряды или изменяющиеся магнитные поля. Когда же мы рассматриваем определенные точки А и В в электростатическом поле известной напряженности E, то можем тут же говорить и о разности электростатических потенциалов между двумя данными точками в текущий момент времени.

Эта разность потенциалов находится как интеграл электрической напряженности между точками А и В, расположенными в данном электрическом поле на определенном расстоянии друг от друга:

Практически такая характеристика как потенциал относится к одному электрическому заряду, который теоретически может быть неподвижно установлен в данную точку электростатического поля, и тогда величина электрического потенциала для этого заряда q будет равна отношению потенциальной энергии W (взаимодействия данного заряда с данным полем) к величине этого заряда:

Отсюда следует, что разность потенциалов оказывается численно равна отношению работы A (работа по сути — изменение потенциальной энергии заряда), совершаемой данным электростатическим полем при переносе рассматриваемого заряда q из точки поля 1 в точку поля 2, к величине данного пробного заряда q:

В этом и заключается практический смысл термина «разность потенциалов», применительно к электротехнике, электронике, и вообще — к электрическим явлениям.

И если мы говорим о какой-нибудь электрической цепи, то можем судить и о разности потенциалов между двумя точками такой цепи, если в ней в данный момент действует электростатическое поле, причем как раз потому, что рассматриваемые точки цепи будут находится одновременно и в электростатическом поле определенной напряженности.

Как было сказано выше, разность электрических потенциалов измеряется в вольтах (1 вольт = 1 Дж/1Кл).

Электростатическое поле — электрическое поле, создаваемое неподвижными электрическими зарядами. Для того, чтобы электрические заряды были неподвижны, на них не должны действовать силы в тех местах, где эти заряды могли бы двигаться. Но внутри проводников заряды могут свободно двигаться, поэтому при наличии электрического поля внутри проводников в них возникло бы движение зарядов (электрический ток).

Следовательно, заряды могут оставаться неподвижными только в том случае, если они создают такое поле, которое везде внутри проводников равно нулю, а на поверхности проводников направлено перпендикулярно к поверхности (т. к. иначе заряды двигались бы вдоль поверхности).

Для этого неподвижные заряды должны располагаться только по поверхности проводников и при том именно таким образом, чтобы электрическое поле внутри проводников было равно нулю, а на поверхности перпендикулярно к ней.

Все сказанное относится к случаю неподвижных зарядов. В случае движения зарядов, т. е. наличия токов в проводниках, в них должно существовать электрическое поле (т. к. иначе не могли бы течь токи) и, следовательно, движущиеся заряды располагаются в проводниках, вообще говоря, не так, как неподвижные, и создают электрические поля, отличные по своей конфигурации от электростатического поля. Но по своим свойствам электростатическое поле ничем не отличается от электрического поля движущихся зарядов.

Электрическое напряжение U

Теперь рассмотрим такое понятие как электрическое напряжение U между точками А и В в электрическом поле или в электрической цепи. Электрическим напряжением называется скалярная физическая величина, численно равная работе эффективного электрического поля (включая и сторонние поля!), совершаемой при переносе единичного электрического заряда из точки А в точку В.

Электрическое напряжение измеряется в вольтах, как и разность электрических потенциалов. В случае с напряжением принято считать, что перенос заряда не изменит распределения зарядов, являющихся источниками эффективного электростатического поля. И напряжение в этом случае будет складываться из работы электрических сил и работы сторонних сил.

Чему равно ЭДС индукции?

Для определения величины возникающей ЭДС рассмотрим контур помещенный в однородное магнитное поле с индукцией В, по данному контуру свободно может перемещаться проводник длиной l.


Возникновение ЭДС индукции в прямолинейном проводнике.

Под действием силы F проводник начинает двигаться со скоростью v. За некоторое время ∆t проводник пройдёт путь db. Таким образом, затрачиваемая работа на перемещение проводника составит

Так как проводник состоит из заряженных частиц – электронов и протонов, то они также движутся вместе с проводником. Как известно на движущуюся заряженную частицу действует сила Лоренца, которая перпендикулярна к направлению движения частицы и к вектору магнитной индукции В, то есть электроны начинают двигаться вдоль проводника приводя  к возникновению электрического тока в нём.

Однако на проводник с током в магнитном поле действует некоторая сила Fт, которая в соответствии с правилом левой руки будет противоположна действию силы F, за счёт которой проводник движется. Так как проводник движется равномерно, то есть с постоянной скоростью, то силы  Fт и F равны по абсолютному значению

где В – индукция магнитного поля,

I – сила тока в проводника, возникающая по действием ЭДС индукции,

l – длина проводника.

Так как путь db пройденный проводником зависит от скорости v и времени t, то работа, затрачиваемая на перемещения проводника, в магнитном поле составит

При перемещении проводника в магнитном поле практически вся затрачиваемая на эту работу механическая энергия переходит в электрическую энергию, то есть

Таким образом, преобразовав последнее выражение, получим значение ЭДС индукции при движении прямолинейного проводника в магнитном поле

где В – индукция магнитного поля,

l – длина проводника,

v – скорость перемещения проводника.

Данное выражение соответствует движению проводника перпендикулярно линиям магнитной индукции. Если происходит движение под некоторым углом к линиям магнитной индукции, то выражение приобретает вид

На практике достаточно трудно посчитать скорость перемещения проводника, поэтому преобразуем выражение к следующему виду

где dS – площадка, которую пересекает проводник при своём движении,

dΦ – магнитный поток пронизывающий площадку dS.

Таким образом, ЭДС индукции равна скорости изменения магнитного потока, который пронизывает контур.

Для обозначения направления движения тока в контуре вводят знак «–», который указывает, что ток в контуре направлен против положительного обхода контура. Таким образом

Зачастую в магнитном поле движется контур, состоящий из множества витков провода, поэтому ЭДС индукции будет иметь вид

где w – количество витков в контуре,

dΨ = wdΦ – элементарное потокосцепление.

Перефразируя предыдущее определение, ЭДС индукции в контуре равна скорости изменения потокосцепления этого контура.

Закон Джоуля-Ленца

Дж. Джоуль и Э. Ленц установили закон преобразования работы тока в тепло.

Определение 2

Формула мощности электрического тока (измеряется в амперах) записывается в виде отношения изменения работы тока ΔAза определенный промежуток времени Δt

P=∆A∆t=UI=I2R=U2R.

Работа и мощность электрического тока обратно пропорциональны.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Описать задание

По таблице СИ понятно, в чем измеряется мощность: в ваттах (ВТ), а работа в Джоулях (Дж).

Перейдем к рассмотрению полной цепи постоянного тока, которая состоит из источника с электродвижущей силой ε и внутренним сопротивлением r на участке R. Запись основного закона Ома для полной цепи имеет вид (R + r)I=ε. При умножении обеих частей на Δq=IΔtполучаем, что соотношение для выражения сохранения энергии полной цепи постоянного тока запишется: R I2Δt+r I2Δt=ε IΔt=ΔAст. Из левой части видно, что ΔQ=R I2Δtобозначает выделяющееся тепло на внешнем участке за промежуток времени Δt, а ΔQист=rI2Δtвнутри источника за тот же время.

εIΔt – это обозначение работы сторонних сил ΔAст,действующих внутри. Если имеется замкнутая цепь, тогда ΔAстпереходит в тепло, которое выделяется во внешней цепи (ΔQ)и внутри источника (ΔQист).

ΔQ+ΔQист=ΔAст=εIΔt.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий