Фильтр цепи питания постоянного тока

Принципиальная схема

На рис.2 приведена типовая схема сетевого фильтра питания. На ней показана трехпроводная (европейская) сеть питания: “фаза” — “ноль” (“нейтраль”) — “земля”. Сразу на входе фильтра стоит варис-тор VR1.

Его задача — подавить высоковольтные выбросы напряжения сети. При появлении такого выброса электрическое сопротивление варистора резко падает, и он замыкает через себя эту помеху, не позволяя ей пройти дальше. Следом включены дроссель Т1 и конденсаторы С1, С2, C3, образующие LC-фильтр.

Сопротивление дросселя возрастает с увеличением частоты тока, а конденсаторов падает, так что все высокочастотные помехи задерживаются или “стекают” в землю.

Помехи могут возникать не только между сетевыми проводами (“фазой” и “нейтралью”), их отфильтрует конденсатор С3, но и между “фазой” и “землей”, а также возможны помехи “нейтоаль» — “земля”. Для эффективного подавления таких помех служат конденсаторы С1 и С2.

Рис. 2. Типовая схема сетевого фильтра питания.

При отсутствии земли общая точка конденсаторов С1 и С2 “висит” в воздухе, что приводит к созданию ими и дросселем Т1 паразитного колебательного контура, который начинает излучать высокочастотное электромагнитное поле, становясь источником потенциальной опасности для расположенной рядом радиоаппаратуры.

Рис. 3. Схема сетевого фильтра без заземленных конденсаторов и связи с землей.

Поэтому в двухпроводной сети применяются фильтры без этих конденсаторов и связи с “землей” (рис.З). Типовая амплитудно-частотная характеристика (АЧХ) сетевого фильтра показана на рис.4. Из этого графикавидно, что чем выше частота помех, тем эффективнее они подавляются.

Рис. 4. График зависимости.

Стоит остановиться на одной особенности фильтров питания. Речь пойдет все о той же “земле”. Существует целый класс сетевых фильтров, у которых заземляющий провод не имеет никакой связи с внутренней схемой, кроме соответствующих контактов самих евророзеток и заземляющего контакта евровилки.

Этим достигается важное преимущество: при работе от сети с заземлением все розетки фильтра заземлены, как и положено. Но в случае отсутствия “земли” в сетевой розетке (типичный случай отечественной сети питания) все розетки фильтра объединены между собой по заземляющему контакту (естественно, сам фильтр при этом не заземлен)

Почему это важно?

Представим, например, схему подключения различной периферии к компьютеру, показанную на рис. 5а (типичный случай — подключены принтер, сканер, внешний звуковой усилитель И Т.П.).

Это — идеальная схема: все подключено к заземленной сети питания, потенциалы корпусов устройств одинаковы (равны нулю), поскольку соединены с “землей”. В случае возникновения пробоя или повреждения изоляции любого из устройств “лишнее” напряжение уйдет в землю.

Рис. 5. Схемы подключения различной периферии к компьютеру.

Теперь возьмем схему соединений для случая сети без заземления (рис.5б). Как видно, провод заземления отсутствует, и единственной связью корпусов устройств является слаботочный интерфейсный кабель (точнее, его экранирующая оплетка).

При разности потенциалов корпуса компьютера и внешнего устройства (а такое наблюдается сплошь и рядом!) уравнительные токи, текущие от большего потенциала к меньшему, могут легко “выжечь” входные и выходные порты соединенных устройств.

Таких случаев встречается множество. Самый распространенный — выгорание входа или выхода звуковой карты в случае подключения ее к внешнему источнику сигнала или к усилителю звука.

Для решения проблемы нужно подключить эти устройства к “европейскому” удлинителю, даже не соединенному (за неимением) с внешней “землей” (рис,5в). Здесь электрические потенциалы всех устройств выровнены, сквозные токи выберут себе более легкий путь через заземляющие контакты евророзеток, и ничего страшного не произойдет.

Конденсатор фильтра высокой частоты

Фильтр высоких частот – это фильтр, который блокирует низкие частоты и пропускает здесь более высокочастотный сигнал. Частота ниже, чем частота среза, блокируется, а частота выше, чем частота среза, разрешенная для прохождения через этот фильтр, также называется фильтром низких частот.. Конденсатор включен последовательно с входом питания; резистор включен параллельно.

Рис. Схема конденсатора-фильтра верхних частот первого порядка.

 Как мы знаем, когда частота входного сигнала низкая, импеданс конденсатора выше, поскольку конденсатор включен последовательно с источником питания, через который его может пройти только высокочастотный сигнал.

Вышеупомянутая схема представляет собой конденсаторный фильтр верхних частот первого порядка, поскольку в этой схеме есть только один реактивный элемент.

конденсатор-фильтр верхних частот второго порядка и конденсаторный фильтр верхних частот первого порядка соединены каскадом, чтобы сформировать конденсаторный фильтр верхних частот второго порядка.

Рис. Схема конденсатора-фильтра верхних частот второго порядка.

Химический источник тока

Химические источники питания постоянного тока – это семейство устройств и аппаратов, которые выдают напряжение на своих клеммах в результате внутренних химических процессов окисления или гальванизации. Их работа основана на реакциях химических веществ, которые, вступая во взаимодействие между собой, производят постоянный электроток.

К сведению. Процессы, протекающие в химических источниках (ХИТ), идут без тепловых или механических воздействий. Это выделяет их в особый ряд среди устройств, генерирующих напряжения постоянной полярности.

Некоторые виды химических источников тока

Термины и определения подробно описаны в ГОСТ Р МЭК 60050-482-2011, введённом в действие 01.07.2012 года. В нём сокращённо обозначены химические источники тока – ХИТ.

Разделение по видам ХИТ производят в следующей градации:

  • первичные;
  • топливные;
  • аккумуляторы.

Это различие проведено по способу действия источника.


Химические источники тока

Элементы однократного применения – первичные источники. В них заложен конечный запас реагентов, которые вступят в реакцию и перестанут вырабатывать энергию по окончании процесса. Это различные батарейки типа АА.

Топливные ХИТ способны работать постоянно, но требуют поступления новой дозы веществ и удаления отработанных продуктов. По сути, это гальваническая ячейка, куда подводятся раздельно топливо и окислитель, они вступают в реакцию на двух электродах. В электролите растворяется топливо, и происходит катодное окисление. Это практически прецизионный лабораторный процесс.


Схема работы топливного элемента

Вторичные элементы, которые имеют возможность использоваться много раз, после подзаряда или перезаряда называются аккумуляторами. Если к таким устройствам подключить ток, то они снова регенерируются и аккумулируют энергию. Они нашли самое широкое применение в питании мобильных устройств и механизмов.


Аккумуляторный источник тока

Признаки тока

Как узнать, есть ли в проводнике ток, не используя специальные приборы? Оказывается, сделать это не очень сложно, так как ток, проходящий по проводнику, всегда совершает какое-то действие: тепловое, магнитное или химическое.

Химическое действие тока мы наблюдаем при электролизе, когда происходит оседание веществ на электродах. Под воздействием электрического тока, пропускаемого через раствор или расплав электролита происходит химическая реакция. В результате одно вещество превращается в другое.

Химическое дествие тока

Магнитное действие тока заключается в том, что любой проводник с током приобретает свойства магнита. Пример – катушка с проводом. Если через провод пропустить электрический ток, то катушка начинает притягивать металлические предметы.

Магнитное действие тока

Проходя по проводнику, электрический ток нагревает его. Так проявляется тепловое действие тока. Электрическая энергия превращается в тепловую. Мы наблюдаем это явление в электрическом камине, где раскаляются нити спирали, или в электрическом утюге.

Тепловое действие тока

Это происходит, потому что любой проводник обладает сопротивлением, преодолевая которое ток совершает работу. Часть этой работы выделяется в виде тепла. И чем больше сопротивление проводника, тем сильнее он нагревается. Именно поэтому спирали нагревательных элементов создают из материалов с высоким сопротивлением.

Количество выделяемого тепла Q

определяется с помощью закона Джоуля-Ленца.

Как устроен ШИМ контроллер

В стабилизированных и регулируемых источниках питания напряжение на выходе поддерживается методом широтно-импульсной модуляции (ШИМ). Суть метода в том, что первичная обмотка питается импульсами неизменной амплитуды и частоты. Для регулировки напряжения в зависимости от нагрузки или выбранного уровня изменяется ширина импульса. Трансформированные во вторичную обмотку импульсы затем выпрямляются и усредняются на выходном конденсаторе фильтра. Чем больше ширина импульса, тем выше усредненное напряжение. Если в результате увеличения тока нагрузки напряжение на выходе просело, ШИМ-контроллер сравнивает выходное напряжение с заданным и дает команду увеличить ширину импульсов. Если напряжение увеличилось, ширина импульсов уменьшается. Среднее напряжение также уменьшается.

Принцип регулирования выходного напряжения методом широтно-импульсной модуляции.

Культовой микросхемой для построения импульсных источников считается TL494. На ее примере можно разобрать принцип действия шим контроллера блока питания.

Распиновка TL494.

Назначение выводов микросхемы указано в таблице.

НазначениеОбозначениеНомер выводаНомер выводаОбозначениеНазначение
Прямой вход усилителя ошибки 1IN1116IN2Прямой вход усилителя ошибки 1
Инверсный вход усилителя ошибки 1­IN1215IN2Инверсный вход усилителя ошибки 1
Выход обратной связиFB314VrefВыход опорного напряжения
Управление временем задержкиDTC413ОТСВыбор режима работы
Частотозадающий конденсаторC512VCCНапряжение питания
Частотозадающий резисторR611С2Коллектор 2-го транзистора
Общий проводGND710E1Эмиттер 1-го транзистора
Коллектор 1-го транзистораC189E2Эмиттер 2 -го транзистора

На выводы 7 и 12 подается напряжение питания +7..40 вольт. На выходе микросхемы установлены два транзистора, которые можно использовать для управления внешними ключами. Коллекторы (выводы 8 и 11) и эмиттеры (10 и 9) выходных транзисторов никуда не подключены. Их можно включать по схеме с открытым коллектором или с открытым эмиттером. Микросхема оптимизирована для управления ключами на биполярных транзисторах, но с использованием немного усложненных схемотехнических решений можно переключать и полевые транзисторы.

Структурная схема TL494.

Частоту генератора задают элементы, подключаемые к выводам 5 и 6. Напряжением на выводе 4 ограничивают ширину выходного импульса. Это необходимо для исключения «перехлеста» открытия транзисторов чтобы избежать ситуации, когда оба ключа оказываются открыты. Через этот вывод также можно организовать мягкий пуск БП. Вывод 13 служит для перевода микросхемы в однотактный режим. Если его подключить к общему проводу, импульсы на выводах обоих ключей станут одинаковыми. На выводе 14 постоянно присутствует образцовое напряжение, равное +5 вольтам. Оно может быть использовано в любых схемотехнических целях.

Выводы 1 и 2 служат прямым и инверсным выводами усилителя ошибки. Если напряжение на выводе 1 превышает напряжение на 2 ноге, то ширина выходных импульсов будет уменьшаться пропорционально разнице на этих выводах. Если напряжение на 2 выводе выше, чем на 1, то на выходе импульсы будут отсутствовать. Также работает второй усилитель ошибки (выводы 16 и 15). Выходы обоих усилителей соединены по схеме ИЛИ и подключены к ноге 3. Первый усилитель обычно используют для регулирования напряжения, второй – для регулирования тока.

Схема ИИП на TL494.

В качестве примера можно рассмотреть схему лабораторного источника на данной микросхеме. Здесь применены практически все технические решения, описанные выше. Регулируемая обратная связь, выполненная на операционных усилителях OP1..OP4, позволяет настраивать уровень выходного напряжения и ограничивать ток. Для создания импульсного напряжения используется полумостовой инвертор на биполярных транзисторах, подключенных к микросхеме посредством драйвера.

Для наглядности рекомендуем серию тематических видеороликов.

Также при создании ИИП применяются и другие микросхемы-регуляторы ШИМ. Они могут отличаться от TL494 по функционалу и назначению выводов, но в них используются те же принципы. Разобраться в их работе не составит труда.

Теория импульсных блоков питания

В обычных источниках питания изменение напряжения и гальваническая развязка выполнялись на трансформаторе со стальным сердечником, работающим на частоте 50 Гц, полупроводниковым выпрямителем и линейным стабилизатором напряжения.

Однако КПД этой схемы очень низкий (не превышает 50%), большая часть мощности преобразуется в тепло в трансформаторе, диоде и аналоговом стабилизаторе. Большая номинальная выходная мощность требует наличия сетевого трансформатора повышенного размера и большой потери тепла. Этого неудобства можно избежать, увеличив рабочую частоту до нескольких сотен кГц и заменив регулятор напряжения электронным ключом с интеллектуальным управлением. Их задача — преобразовать сетевое напряжение в постоянное, а затем в выпрямленное напряжение, выполняемое быстрым переключением транзисторов. В результате получается высокочастотное прямоугольное напряжение, которое преобразуется импульсным трансформатором и выпрямителем.

Стабилизация выходной мощности достигается изменением ширины импульса при постоянной частоте или включением переключения в определенные периоды времени в зависимости от нагрузки схемы. Наиболее важные преимущества SMPS, сравнимые с обычными блоками питания:

  • малый вес, уменьшенный объем, повышенная эффективность
  • малая емкость фильтрующих конденсаторов для высоких частот переключения
  • отсутствие слышимых помех из-за того, что частота переключения находится за пределами слышимого диапазона
  • простое управление различными выходными напряжениями
  • легко снижать высокое сетевое напряжение

С развитием мощных транзисторов с быстрой коммутацией для высоких частот, стало возможным использовать ИИП, работающие на частотах до 1 МГц. С помощью этого типа резонансных трансформаторов рабочие частоты могут быть увеличены даже до 3 МГц. Тем не менее, эти преимущества уменьшаются из-за нежелательного высокочастотного излучения, а также из-за более низкой скорости реакции на возможные изменения нагрузки.

Эта тенденция привела к разработке новых ферритов Mn-Zn с очень мелкой структурой зерен и материалов с уменьшенными гистерезисными потерями, что позволяет передавать мощность в диапазоне от 1 до 3 МГц. Высокие рабочие частоты приводят к дальнейшему уменьшению размеров ядер и, следовательно, всего блока питания. Новый принцип конструкции в планарной технологии позволяет изготавливать высокочастотные трансформаторы с кардинально уменьшенными размерами (плоские трансформаторы, низкопрофильные трансформаторы). Эта технология оказывает сильное влияние на разработку преобразователей постоянного и переменного тока, а также на производство гибридных импульсных источников питания.

Но вернёмся к теории. Импульсный источник питания работает контролируя среднее напряжение, подаваемое на нагрузку. Это делается путем размыкания и замыкания переключателя (обычно мощного полевого транзистора) на высокой частоте. Система более известна как широтно-импульсная модуляция — ШИМ. Схема ШИМ — самая важная, которая отличает этот тип блока питания, поэтому стоит вспомнить хотя бы само название.

На приведенной диаграмме показаны идеи, лежащие в основе работы ШИМ, и ее довольно просто понять: V = напряжение, T = период, t (вкл.) = длительность импульса. Среднее напряжение приложенное к нагрузке, можно объяснить следующей формулой:

Vo (av) = (t (on) / T) x Vi

Импульсы следуют друг за другом быстро (это порядка многих кГц, то есть тысячи раз в секунду), и для того, чтобы нагрузка не видела внезапных импульсов, необходимы конденсаторы, обеспечивающие относительно постоянный уровень напряжения. Уменьшение времени t (on) вызывает уменьшение среднего значения выходного напряжения Vo (av) и наоборот — увеличение длительности высокого вольтажного состояния t (on) увеличивает выходное напряжение Vo (av).

Частота, с которой работает ШИМ, обычно находится в диапазоне от 30 кГц до 150 кГц, но может быть намного выше.

Сфера применения ИБП

Эра классических трансформаторных БП уходит в небытие. Импульсные преобразователи на основе полупроводниковых стабилизаторов повсеместно их вытесняют, поскольку при тех же значениях выходной мощности характеризуются гораздо меньшими весогабаритными показателями, они надёжнее аналоговых оппонентов и обладают намного более высоким КПД, позволяя снизить тепловые потери. Наконец, ИБП могут функционировать с входным напряжением в обширном диапазоне значений. Импульсный блок такого же размера, как трансформаторный, обладает в разы большей мощностью.

В настоящее время в сферах, требующих преобразования переменного напряжения в постоянное, используются практически только импульсные инверторы, при этом они могут обеспечить и повышение напряжения, что недоступно для классических аналоговых блоков. Ещё одним достоинством ИБП является способность обеспечить смену полярности выходного напряжения. Работа на высоких частотах облегчает функцию стабилизации/фильтрации выходных импульсов.

Малогабаритные инверторы, построенные на специализированных микросхемах, являются основой зарядных устройств всевозможных мобильных гаджетов, а надёжность их такова, что срок службы существенно превышает ресурс мобильных устройств. О компьютерных блоках питания мы уже упоминали. Отметим, что принцип работы ИБП используется в 12-вольтовых драйверах питания светодиодов.

Как вам статья?

Мне нравится8Не нравится7

Павел Бакалавр “210400 Радиотехника” – ТУСУР. Томский государственный университет систем управления и радиоэлектроники
Написать Пишите свои рекомендации и задавайте вопросы

Чем отличается от трансформаторного блока питания

Блок-схемы трансформаторного и импульсного блоков питания

Как работает трансформаторный блок питания

В линейном блоке питания основное преобразование происходит при помощи трансформатора. Его первичная обмотка рассчитана под сетевое напряжение, вторичная обычно понижающая. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.

Следующий блок — выпрямитель, на котором синусоида сглаживается, превращается в пульсирующее напряжение. Этот блок выполнен на основе выпрямительных диодов. Диод может стоять один, может быть установлен диодный мост (мостовая схема). Разница между ними — в частоте импульсов, которые получаем на выходе. Дальше стоит стабилизатор и фильтр, придающие выходному напряжению нужный уровень и форму. На выходе имеем постоянное напряжение.

Самый простой линейный блок питания с двухполупериодным выпрямителем без стабилизации

Основной недостаток линейных источников питания — большие габариты. Они зависят от размеров трансформатора — чем выше требуется мощность, тем больше размеры блока питания. Нужен еще стабилизатор, который корректирует выходное напряжение, а это еще увеличивает габариты, снижает КПД. Зато это устройство не грозит помехами работающему рядом оборудованию.

Устройство импульсного блока питания и его принцип работы

В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».

Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность

Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц

Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.

Блок-схема ИИП с формами напряжения в ключевых точках

Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).

На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.

Достоинства и недостатки импульсных блоков питания

Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.

Размер тоже имеет значение

Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.

Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.

Параллельная схема

Цепь RL

Параллельная цепь RL обычно менее интересна, чем последовательная цепь, если она не питается от источника тока. Во многом это связано с тем, что выходное напряжение Vвне равно входному напряжению Vв – в результате эта схема не действует как фильтр для входного сигнала напряжения.

Со сложными сопротивлениями:

яр=VяпряL=VяпjωL=−jVяпωL.{ displaystyle { begin {align} I_ {R} & = { frac {V _ { mathrm {in}}} {R}} I_ {L} & = { frac {V _ { mathrm {in} }}} {j omega L}} = – { frac {jV _ { mathrm {in}}} { omega L}} ,. end {выравнивается}}}

Это показывает, что катушка индуктивности отстает от тока резистора (и источника) на 90 °.

Параллельная схема видна на выходе многих схем усилителя и используется для изоляции усилителя от эффектов емкостной нагрузки на высоких частотах. Из-за фазового сдвига, вносимого емкостью, некоторые усилители становятся нестабильными на очень высоких частотах и ​​имеют тенденцию к колебаниям. Это влияет на качество звука и срок службы компонентов (особенно транзисторов), и этого следует избегать.

Источники и признаки постоянного тока

Движение зарядов в электрической цепи обеспечивают источники тока. Для постоянного тока источниками могут быть:

  • батарейки или аккумуляторы;
  • генераторы постоянного тока;
  • преобразователи и выпрямители импульсов переменного тока.

Основные химические источники электроэнергии

Гальванические элементы вырабатывают постоянный ток в результате электрохимической реакции.

Машины постоянного тока производят его с помощью электромагнитной индукции и выпрямляют в обмотках коллектора.

Схемы преобразователей и полупроводниковые выпрямители на транзисторах или высоковольтных диодах так же могут выдавать ток, характеристики которого не меняются во времени. Преобразователи могут регулировать частоту и напряжение, оставляя неизменным ток.

По каким признакам определяют наличие тока, если нет измерительных приборов? Это можно выяснить по его воздействию на проводник. Такие действия можно разделить на три вида:

  • магнитные;
  • химические;
  • тепловые.

Если через проводник, из которого выполнена обмотка катушки, пропустить электроток, то катушка станет притягивать металлические элементы. На этом принципе работают большие электромагниты, задействованные при погрузке металла в морских портах.

Химическое действие, по которому можно судить о наличии тока, – это процесс электролиза. При нём на электродах, подключенных к источнику, начинает оседать вещество. Эти процессы используются в гальваностегии или гальванопластики.

При подключении к двухполюснику проводника с высоким сопротивлением электрическому току он начинает нагреваться и отдавать тепло. Например, чтобы электроны двигались через нихромовую спираль, совершается работа с выделением тепла. Это свойство проводника используется при изготовлении нагревательных приборов.

Важно! Источник тока отличается от источника напряжения тем, что первый отдаёт одинаковый ток, независимо от сопротивления нагрузки, второй –снабжает потребителя напряжением, которое не изменяется при любой нагрузке. Квартирная розетка 220 В – источник напряжения, сварочный аппарат – токовый ресурс

Активные фильтры

Активные фильтры применяются в тех случаях, когда пассивные фильтры не годятся по массогабаритным или температурным параметрам. Дело в том, что, как уже говорилось, чем больше ток нагрузки, тем больше емкость сглаживающих конденсаторов. На практике это вытекает в необходимость применения громоздких электролитических конденсаторов. В активном фильтре используется транзистор в схеме эмиттерного повторителя (каскад с общим коллектором), поэтому сигнал на эмиттере практически повторяет сигнал на базе (рис. 6)

Рис. 6 – Активный фильтр

Цепь R1C1 рассчитывается как резистивно – емкостной фильтр, только в качестве потребляемого тока берется ток в цепи базы

Однако, как видно из формулы, режим фильтра (в том числе и коэффициент сглаживания) будет зависеть от потребляемого тока, поэтому его лучше зафиксировать (рис. 7)

Рис. 7 – Активный фильтр

Схема работает при условии, что , при чем выходное напряжение будет составлять примерно 0,98 из-за просадки напряжения в повторителе. За сопротивление нагрузки принимаем R2.

Помехозащитные фильтры

Надо сказать, что радиопомехи могут проникать не только из сети в прибор, но и из прибора в сеть. Поэтому оба направления следует защищать от помех. Особенно это касается импульсных БП. Как правило, это сводится к подключению конденсаторов небольшой емкости (0,01 – 1,0 мкФ) параллельно цепи, как это показано на рис. 8.

Рис. 8

Как и в случае со сглаживающими фильтрами, помехозащитные фильтры работают при условии, что емкостное сопротивление конденсаторов на частоте возникновения помехи много меньше сопротивления нагрузки.

Возможно, что помеха возникает ни от спонтанного перепада тока в сети или прибора, а от постоянной «вибрации». Это относится, например, к импульсным БП или передатчикам в телеграфном режиме. В этом случае может потребоваться еще и индукционная развязка (рис. 9).

Рис.9 – Индукционная развязка

Однако конденсаторы должны быть подобраны так, чтобы не возникал резонанс в обмотках дросселей и трансформаторов.

Конденсатор фильтра нижних частот

Фильтр нижних частот пропускает только частотный сигнал, который ниже, чем частота среза фильтра. Для этого фильтра нижних частот соотношение между сопротивлением конденсатора и частотой среза является

Резистор в схеме не зависит от изменения приложенной частоты, но конденсатор чувствителен к изменениям частоты входного сигнала.

Рис. Диаграмма первого порядка низкочастотный схема фильтр-конденсатор.

Когда частота входного сигнала низкая, импеданс конденсатора выше, чем импеданс конденсатора. резистор к входному напряжению падение на конденсаторе. Тем не менее, когда частота входного сигнала высока, импеданс конденсатора ниже, чем у конденсатора. резистор делает большее падение напряжения на резистор. Низкая частота пропускается, а высокая частота блокируется.

 В фильтре нижних частот частоты ниже частоты среза известны как полоса пропускания, а частота выше частоты среза называется непропускания.

Фильтры нижних частот используются для

  • Для уменьшения электрического шума
  • Чтобы ограничить полосу пропускания сигнала
  • Чтобы уменьшить помехи

Коэффициент усиления фильтра нижних частот по величине можно рассчитать следующим образом:

Коэффициент усиления фильтра = 20log (Vout / Vin)

Vout-> выходное напряжение фильтра

Vin-> входное напряжение фильтра

Индуктивный сглаживающий фильтр

Применяется в маломощных выпрямителях, но может входить в состав сложных многозвенных фильтров. Параметры дросселя следует выбирать так, чтобы активное сопротивление обмотки rдр было много меньше сопротивления нагрузки (rдр << Rн), а индуктивное сопротивление Xдр = 2πfпLф на частоте пульсаций fп – много больше, чем Rн(Xдр >> Rн). В этом случае почти вся постоянная составляющая напряжения будет приложена к нагрузке, а переменная составляющая – к дросселю.

По заданному коэффициенту сглаживания q можно рассчитать необходимую индуктивность сглаживающего фильтра

Индуктивный фильтр прост, дешев, имеет малые потери мощности; коэффициент сглаживания фильтра растёт с увеличением индуктивности дросселя, числа фаз питающего напряжения и с уменьшением сопротивления нагрузки. Поэтому индуктивные фильтры обычно применяются совместно с многофазными мощными выпрямителями. При отключении нагрузки или скачкообразном изменении ее сопротивления возможно возникновение перенапряжений; в этом случае параллельно обмотке дросселя необходимо включать защитные устройства, например разрядники. В маломощных однофазных выпрямителях индуктивный фильтр может являться звеном более сложного фильтра.

Преимущества и недостатки ИБП

Конечно, как и любое другое электронное устройство, подобный блок питания имеет как свои достоинства, так и недостатки. Конечно, т.к. этот БП является более высокотехнологичным прибором, положительных качеств в нем намного больше, чем отрицательных, но все же есть необходимость объективного рассмотрения, а потому умалчивать о минусах тоже не стоит. Но все же, для начала перечислим плюсы, а после будем разбирать их подробнее.

Основными и несомненными достоинствами импульсного блока питания являются:

  • более легкий вес;
  • высокий коэффициент полезного действия;
  • низкая цена;
  • широкий диапазон токов;
  • присутствие защиты от различных факторов.

Ну а теперь остановимся на каждом из пунктов подробнее.

Преимущества

  1. Малый вес и габариты достигаются за счет импульсной технологии, повышения частоты тока, а значит и уменьшения трансформаторных установок. В ИИП не требуется крупногабаритных радиаторов и обмоток. Также сокращена и емкость конденсаторов. К тому же схема выпрямления упрощается до элементарной — однополупериодной.
  2. Естественно, что у трансформаторных блоков питания большая часть энергии уходит на прогрев, в результате чего падает КПД. У импульсных БП незначительная часть этой энергии теряется на каскадах силовых ключей. После уже все транзисторы стабильны, а потому коэффициент полезного действия у таких БП может достигать 97%.
  3. Стоимость этих устройств снижается за счет расширения производства элементов для сборки подобной схемы. Они и непосредственно после появления на рынке стоили немного, а сейчас, когда ими насыщены все области продаж, их стоимость падает все ниже. Можно добавить, что и полупроводники возможно использовать менее мощные благодаря управляемым ключам.
  4. Широкий диапазон достигается как раз благодаря импульсным технологиям. Допускается питание разной частоты и амплитуды, что не может не сказаться и на расширении областей их применения.
  5. На основании того, что модули полупроводников достаточно малы, появляется возможность встраивания дополнительных блоков защиты (от короткого замыкания, перегрева, перегрузки и т.п.).

Недостатки

Если разговор зашел о плюсах, то не стоит оставлять без внимания и минусы, хотя их и ничтожно мало. Основным недочетом в работе импульсных блоков питания можно назвать высокочастотные помехи. Они естественны, т.к. само устройство работает именно на них. Как раз по этой причине используется различное шумоподавление, которое, впрочем, до конца проблему не решает.

А потому подобные ИБП не используются на некоторых высокоточных измерительных приборах.

Еще одним недостатком можно назвать некорректную работу на сверхнизких и сверхвысоких частотах — такие «стрессовые» токи могут либо вывести прибор из строя, либо на выходе он будет выдавать искаженное напряжение, не соответствующее заявленным техническим характеристикам.

Eмкостной сглаживающий фильтр

Емкостной сглаживающий фильтр состоит из конденсатора Сф, подключённого параллельно сопротивлению нагрузки Rн. Принцип действия заключается в накоплении электрической энергии конденсатором фильтра и последующей отдачи этой энергии в нагрузку. Заряд и разряд конденсатора фильтра происходит с частотой пульсаций fп выпрямленного напряжения.

Для расчёта ёмкости конденсатора сглаживающего фильтра можно воспользоваться следующей формулой

, где

результируещее значение ёмкости выражено в микрофарадах,
SOH – коэффициент пульсаций в процентах, %;
RH – сопротивление нагрузки в омах, Ом;
fc – частота сети в герцах, Гц;
m – число используемых при выпрямлении полупериодов за период напряжения сети,m = 1 – для однополупериодных, m = 2 – для двухполупериодных.

Емкостной фильтр целесообразней всего применять совместно с однофазными и маломощными схемами выпрямления.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий