Энергия без проводов презентация

Особенность передачи энергии

На самом деле начало разработки принципа беспроводной передачи электричества восходит к 19 веку, когда Никола Тесла использовал проводящие системы создав  магнитное поле для передачи энергии по воздуху. Поскольку он система находилась не в режиме, большая часть энергии была потрачена впустую и имела маленький КПД.

Все мы знаем об использовании электромагнитных излучений (радиоволн), которые достаточно хорошо известны для беспроводной передачи информации. Кроме того, лазеры также использовались для передачи энергии без проводов. Однако радиоволны не подходят для передачи энергии, потому что природа излучения такова, что радиоволны распространяются по всему пространству, в результате чего большое количество излучений тратится впустую. А в случае лазеров необходима непрерывная линия визирования (препятствие мешает процессу передачи).

Более практичной технологией принципа беспроводной передачи электричества считается применение электромагнетизма.

Электромагнетизм-термин, обозначающий взаимозависимость изменяющихся во времени электрических и магнитных полей. Например, оказывается, что и колеблющееся магнитное поле производит магнитное электрическое поле – эффект магнитной индукции.

Магнитная индукция: если петля или катушка из проводящего материала будет нести переменный ток, то это является эффективной структурой для генерации или «захвата» магнитного поля.

Если контур подключить к источнику питания переменного тока, он будет создавать колебательное магнитное поле возле контура. Вторая петля, расположенная вплотную к первой, может «захватить» некоторую часть этого колеблющегося магнитного поля.  Магнитное поле будет генерировать электрический ток во второй катушке. Ток, генерируемый во второй катушке, может  использоваться для питания различных устройств.

Этот тип передачи электрической энергии от одной петли или катушки к другой хорошо известен и называется магнитная индукция. Наиболее распространенными примерами устройств, основанных на магнитной индукции, являются электрические трансформаторы и электрогенераторы.

Энергетическая связь принципа: энергетическая связь возникает, когда источник энергии имеет средство передачи энергии другому объекту. Одним из простых примеров является локомотив, тянущий вагон поезда-механическая связь между ними позволяет локомотиву тянуть поезд и преодолевать силы трения и инерции, которые удерживают поезд на месте и поезд движется. Магнитная связь возникает, когда магнитное поле одного объекта взаимодействует со вторым объектом и индуцирует электрический ток в этом объекте или на нем. Таким способом электрическая энергия может быть передана от источника питания к питаемому устройству. В  отличие от примера механической связи, приведенного для поезда, магнитная связь не требует какого-либо физического контакта между объектом, генерирующим энергию, и объектом, получающим или улавливающим эту энергию.

Электрический трансформатор-это устройство, которое использует магнитную индукцию для передачи энергии от своей первичной обмотки к своей вторичной обмотке, не соединяя обмотки друг с другом. Он используется для «преобразования» переменного тока при одном напряжении в переменный ток при другом напряжении.

Технологии

Речь идет о наиболее перспективных направлениях, связанных с разработкой новых методов и способом транспортировки электроэнергии без материального контакта.

Ультразвуковой способ

Технологию продемонстрировали десять лет назад. Студенты из университета Пенсильвании воспользовались ультразвуковым передатчиком и приемником, чтобы показать свой эксперимент. Радиус действия достиг десяти метров. Передаваемые частоты не оказали никакого воздействия на человека или животного. Но были и недостатки: низкий КПД и отсутствие прямой видимости между «узлами».

Электромагнитная индукция

Чтобы понять его принцип действия, вспомни, как работает обыкновенный трансформатор. Имеются две катушки и ток, который протекает от первичной обмотки ко вторичной.

У такого метода есть недостаток. Он заключается в близости катушек. Другими словами, много энергии уходит в пространство.

Метод электростатической индукции

Суть в прохождении энергии сквозь тело диэлектрика. Способ носит название «Емкостная связь». Благодаря работе генератора возникает электрополе, возбуждающее разницу потенциалов. Последняя возникает между двумя электродами.

Микроволновое излучение

Ценник на такое оборудование довольно высокий. Но и работа не отстает – отличается большой дальностью действия. Передатчиком выступает радиоантенна. Она отлично справляется с созданием микроволнового излучения. Приемник оснащен ректенной, преобразующей последнее в электроток. Благодаря такой технологии приемник может находиться на дальнем расстоянии от передатчика.

Лазерный метод

Передача энергии происходит за счет преобразования ее в луч. Последний дальше следует на фотоэлемент приемника. Это позволяет передать большой объем. Но есть и нюанс – планы разбиваются об атмосферу и энергия рассеивается. Конечно, не вся, но шестьдесят процентов точно. Такая технология может применяться и в безвоздушном пространстве.

Электропроводность Земли

Гидросфера и залежи металлических руд используются, чтобы передавать ток на низких частотах. Очагом возникновения могут стать огромные залежи кварцевого песка.

Всемирная беспроводная система

Метод возник в 1904 году. Тесла заявил, что создание такой системы при использовании повышенной электропроводности плазмы и Земли, вполне имеет место.

Реальные проекты в наши дни

Из всего того, что на сегодня предлагает рынок электротехники, относятся к беспроводной передаче электроэнергии зарядные устройства для смартфонов, электрические зубные щётки. В них используется принцип электромагнитной индукции.

Бесконтактная зарядка смартфона

В авиастроении началось серийное производство летательных беспилотных аппаратов, питающихся за счёт беспроводной передачи электричества. Небольшой микроволновый вертолёт с ректенной может подниматься на высоту до 15 метров над землёй. Появились беспилотники, которые могут летать в зоне видимости лазерного луча.

Китайский производитель бытовой техники Haier Group с 2010 года выпускает беспроводные LCD телевизоры.

Как работает беспроводное электричество: индукция

Несмотря на то, что технология активно развивалась в последние десятилетия, один из самых популярных способов беспроводной передачи электроэнергии мало чем отличается от того, который использовал Фарадей. Одна резонансная медная катушка подключена к источнику питания, другая действует как приемник.

Видео работы беспроводного электричества с использованием двух катушек наглядно демонстрирует как простоту технологии, так и ее главную проблему — малый радиус действия. Кроме того, с его помощью невозможно передать большое количество энергии (катушки расплавятся), несмотря на то, что КПД составляет около 40% (об этом Тесла писал в 1899 году).

Однако нельзя сказать, что магнитная индукция не нашла своего применения. Сегодня технология активно используется для производства беспроводных зарядных устройств. Apple в 2017 году представила свои беспроводные зарядные устройства как нечто революционное, хотя этому новому продукту на самом деле более 100 лет.

Беспроводное электричество: популярные технологии

Помимо индукции, на которую производители электромобилей и гаджетов делают основные ставки, известны еще 3 метода: лазер, микроволновка, ультразвук. Ученые убеждены, что каждое из этих направлений может развиваться в будущем.

Лазер. Энергия передается путем преобразования ее в луч, который направляется на фотоэлемент в приемнике. Таким образом может передаваться большое количество энергии, но эти самолеты разрушаются в атмосфере Земли, из-за чего большая часть (около 60%) энергии рассеивается. Но в безвоздушных пространствах технология вполне жизнеспособна. Вот почему компании, занимающиеся исследованием космоса, продолжают изучать лазерные технологии: в 2009 году НАСА даже провело конкурс с призовым фондом в 900 000 долларов для лазера WPT. Первое место занял Laser Motive: на 1 км и 0,5 кВт непрерывной передаваемой мощности. Несмотря на то, что, конечно, мишени достигли лишь 10% энергии, эксперимент был признан успешным.

СВЧ. Теоретически передачу энергии радиоволн можно сделать направленной, используя полупроводники или лампы (циклотронные преобразователи энергии). Полупроводники сейчас активно используются во всем мире, но когда дело доходит до передачи большого количества энергии, необходимо использовать больше полупроводников. Это не только увеличивает стоимость проекта, но и появляется переизлучение, т.е находиться рядом с такими панелями небезопасно. Но полупроводниковые системы показали высокий КПД — более 80%. Это было продемонстрировано Уильямом Барауном в 1975 году, передав 30 кВт на расстояние более 1 км. Создателями циклотронного преобразователя энергии являются советские ученые Владимир Савин и Владимир Ванке, хотя его КПД не превышает 70-80%, надежность достаточно высока.

Ультразвук. Технология была представлена ​​в 2011 году на выставке All Things Digital (D9). Студенты из Пенсильванского университета использовали ультразвуковой передатчик и приемник (преобразование захваченного электричества). Дальность действия составляет примерно 10 метров. Недостатки: между «узлами» должна быть прямая видимость, низкий КПД. Однако передаваемые ультразвуковые частоты не влияют на людей или животных.

Плюсы и минусы

Конечно, у этого изобретения есть свои преимущества перед проводными методиками, и недостатки. Предлагаем их рассмотреть.

К достоинствам относятся:

  1. Полное отсутствие проводов;
  2. Не нужны источники питания;
  3. Необходимость батареи упраздняется;
  4. Более эффективно передается энергия;
  5. Значительно меньше нужно технического обслуживания.

К недостаткам же можно отнести следующее:

  • Расстояние ограничено;
  • магнитные поля не так уж и безопасны для человека;
  • беспроводная передача электричества, с помощью микроволн или прочих теорий практически неосуществима в домашних условиях и своими руками;
  • высокая стоимость монтажа.

Основные технологические процессы в электроэнергетике

Нормативы потребления электроэнергии на человека без счетчика

Производство электроэнергии в России базируется на трёх китах энергетической системы. Это атомная, тепловая и гидроэнергетика.

Три вида генерирования электричества

ЭлектростанцияТопливоГенерация
ТЭСУголь, мазутПолучение пара от сгорания топлива, который движет турбины генераторов
ГЭСПотенциальная энергия потока водыДвижение турбин под напором воды
АЭСУрановые сердечникиПолучение пара от тепла ядерной реакции. Энергия пара движет генераторные паротурбины

Ультразвуковой способ

Студентами Пенсильванского университета (США) на недавней выставке в 2011 году был продемонстрирован способ передачи электротока с помощью ультразвука. Передатчик генерировал акустические волны в ультразвуковом диапазоне, приёмник преобразовывал их в электрический ток. В качестве носителя энергии ультразвук был выбран не случайно. Его воздействие на организм человека абсолютно безвредно.

Несовершенство этого способа заключается в том, что КПД передачи очень низкий, нужны прямая видимость между абонентами и ограниченность расстояния (7-10 метров).

Метод электромагнитной индукции

Работа обыкновенного трансформатора даёт представление о том, как осуществляется передача электричества без проводов методом электромагнитной индукции. В процессе участвуют две катушки. Магнитное поле, возбуждаемое протекающим током по виткам первичной обмотки, индуцирует электрический поток во вторичной обмотке трансформатора.

Примерами использования эффекта электромагнитной индукции могут быть зарядные устройства смартфонов и электрические зубные щётки. Недостатком такого способа передачи энергии является непременная близость катушек. Даже при небольшом увеличении промежутка между обмотками большая часть энергии начинает распыляться в пространстве.

Один из видов электромагнитной индукции – это использование резонанса. Суть способа заключается в том, что приёмник и передатчик функционируют в одном частотном диапазоне. Передающее и приёмное устройства представляют собой соленоид с одним слоем витков. Генерирующий прибор оснащён конденсаторной схемой, с помощью которой он настраивается на частоту приёмника.

Демонстрация метода электромагнитной индукции

Электростатическая индукция

В основе метода заложен принцип прохождения энергии через тело диэлектрика. Способ называют ёмкостной связью. Генератор создаёт в ёмкости электрическое поле, которое возбуждает разницу потенциалов между двумя электродами потребителя.

Никола Тесла для демонстрации беспроводной лампы освещения использовал именно метод электростатической индукции. Лампа получала питание от переменного электрического поля высокой частоты. Она светилась ровно, независимо от её перемещения в пространстве комнаты.

Микроволновое излучение

Специалисты космотехники разработали способ передачи электроэнергии от орбитальных солнечных батарей на космические корабли с помощью радиосигнала микроволнового диапазона. Проблема этого метода состоит в том, что для приёма и передачи пучкового излучения требуются антенны с очень большой диафрагмой.

Учёные НАСА в 1978 году пришли к выводу, что для передачи микроволнового луча частотой 2,45 ГГц излучающая антенна должна иметь диаметр отражающей поверхности 1 км. Приёмная ректенна должна быть диаметром 10 км. Уменьшить эти размеры возможно путём использования сверхкоротких волн. Однако сигналы такого диапазона быстро поглощаются атмосферой или блокируются дождевыми осадками.

Обратите внимание! Безопасная плотность мощности излучаемой энергии равняется 1 мВт/см2. Этой норме отвечает антенна диаметром 10 км с передающей мощностью потенциала 750 МВт

Электропроводность Земли

Существует теория использования недр и океанов Земли для беспроводной передачи энергии. Электропроводимость гидросферы, залежей металлических руд может быть использована для передачи низкочастотного переменного тока. Электростатическая индукция диэлектрических тел может возникать в огромных залежах кварцевого песка и тому подобных минералов.

Передача электрического тока возможна также через воздушное пространство методом электростатической индукции. Никола Тесла в своё время выдвинул предположение, что в будущем появятся технологии, которые для передачи электроэнергии будут использовать землю, океанические воды и атмосферу планеты.

Всемирная беспроводная система

Впервые о Всемирной беспроводной системе передачи электроэнергии стало известно от великого учёного Теслы. В 1904 году он заявил, что создание ВБС, используя высокую электрическую проводимость плазмы и Земли, вполне осуществимо.

Маршрут транспортировки электричества

Итак, как мы уже сказали, начальной точкой является электрическая станция, которая, собственно, и генерирует электроэнергию. На сегодняшний день основными видами электростанций являются гидро- (ГЭС), тепло- (ТЭС) и атомные (АЭС). Помимо этого бывают солнечные, ветровые и геотермальные эл. станции.

Далее от источника электричество передается к потребителям, которые могут находиться на дальних расстояниях. Чтобы осуществить передачу электроэнергии, нужно повысить напряжение с помощью повышающих трансформаторов (напряжение могут повысить вплоть до 1150 кВ, в зависимости от расстояния).

Почему электроэнергия передается при повышенном напряжении? Все очень просто. Вспомним формулу электрической мощности — P=UI, тогда если передавать энергию к потребителю, то чем выше напряжение на линии электропередач — тем меньше ток в проводах, при той же потребляемой мощности. Благодаря этому можно строить ЛЭП с большим напряжением, уменьшив сечение проводов, по сравнению с ЛЭП с низшим напряжением. Значит и сократятся расходы на строительство — чем тоньше провода, тем они дешевле.

Соответственно от станции электричество передается на повышающий трансформатор (при необходимости), а после этого с помощью ЛЭП осуществляется передача электроэнергии на ЦРП (центрально распределительные подстанции). Последние, в свою очередь, находятся в городах или в близком расстоянии от них. На ЦРП происходит понижение напряжения до 220 или же 110 кВ, откуда электроэнергия передается к подстанциям.

Далее напряжение еще раз понижают (уже до 6-10 кВ) и происходит распределение электрической энергии по трансформаторным пунктам, именуемым также ТП. К трансформаторным пунктам электричество может передаваться не по ЛЭП, а подземной кабельной линией, т.к. в городских условиях это будет более целесообразно. Дело в том, что стоимость полосы отчуждения в городах достаточно высокая и более выгодно будет прокопать траншею и заложить кабель в ней, нежели занимать место на поверхности.

От трансформаторных пунктов электроэнергия передается к многоэтажным домам, постройкам частного сектора, гаражному кооперативу и т.д

Обращаем ваше внимание на то, что на ТП напряжение еще раз понижается, уже до привычных нам 0,4 кВ (сеть 380 вольт)

Если кратко рассмотреть маршрут передачи электроэнергии от источника к потребителям, то он выглядит следующим образом: электростанция (к примеру, 10 кВ) – повышающая трансформаторная подстанция (от 110 до 1150 кв) – ЛЭП – понижающая трансформаторная подстанция – ТП (10-0,4 кВ) – жилые дома.

Советуем изучить Дезинфекционное освещение для обеззараживания и лечения заболеваний

Вот таким способом электричество передается по проводам в наш дом. Как вы видите, схема передачи и распределения электроэнергии к потребителям не слишком сложная, все зависит от того, насколько большое расстояние.

Наглядно увидеть, как электрическая энергия поступает в города и доходит до жилого сектора, вы можете на картинке ниже:

Более подробно об этом вопросе рассказывают эксперты:

Как электричество поступает от источника к потребителю

Использование различных микроволн

Этот метод также основан на преобразовании разных видов энергии. В роли переносчика энергии служат электромагнитные волны сверхвысокой частоты. Впервые этот метод описал и практически реализовал в своей установке японский физик и радиотехник Хидэцугу Яги в двадцатых годах прошлого века. Частота радиоволн для передачи электроэнергии без проводов находится в диапазоне от 2,4 до 5,8 ГГц. Уже протестирована и получила положительные отзывы экспериментальная установка, которая одновременно раздает Wi-Fi и запитывает слабомощные бытовые электроприборы.

Лазерный луч также является электромагнитным излучением, но с особым свойством — когерентностью. Оно уменьшает потери энергии при передаче и тем самым повышает КПД. Из достоинств можно отметить следующие:

  • возможность передачи на большие расстояния (десятки километров в атмосфере Земли);
  • удобство и простота установки для маломощных приборов;
  • наличие визуального контроля процесса передачи — лазерный луч виден невооруженным глазом.

Лазерный метод имеет и недостатки, а именно: сравнительно низкий КПД (45−50%), потери энергии из-за атмосферных явлений (дождь, туман, пылевые тучи) и необходимость нахождения передатчика и приемника в поле видимости.

Наиболее перспективные направления

Беспроводное электричество постоянно изучается многими физиками, рассматриваются наиболее перспективные направления в этой области, к которым относятся:

  1. Заряжайте мобильные устройства без подключения к кабелю;
  2. Реализация электроснабжения беспилотных летательных аппаратов — направление, которое будет пользоваться большим спросом как в гражданской, так и в военной отраслях, поскольку такие устройства в последнее время используются для различных целей.

Та же процедура удаленной передачи данных без использования проводов считалась когда-то прорывом в физических и энергетических исследованиях, сейчас никого не удивляет и стала доступна каждому. Благодаря современному развитию технологий и разработок, транспортировка электроэнергии этим методом становится реальностью и может быть реализована.

Ожидание относительно короткое. Если японцы сдержат свои обещания, в 2020 году вся бытовая техника, компьютеры и портативные устройства смогут освободиться от ига проводов, поработивших человечество. Покупателю останется только принести домой, например, новый телевизор, повесить его на стену и начать смотреть фильм буквально сразу, не задумываясь над тем, на каком экране скрыть некрасивый черный шнур питания. На улицах, в квартирах, в кафе будут встроены беспроводные передатчики энергии, что позволит людям забыть о разряженных батареях. Конечно, на окончательное воплощение таких идей в жизнь уйдет целых десять лет, но у нас есть все шансы на светлое будущее. К тому же уже есть вполне функциональные технологии. Жалко, что Никола Тесла не увидит этот день…

Но ведь прототипы уже существуют? Прогресс не остановить!

Как ни странно, в странах, где актуален научный подход и правит сухой математический анализ, отношение к «зеленому электричеству» и его беспроводной передаче своеобразное.

Так, министерство промышленности и информационных технологий Китая вынесло некоторое время назад на обсуждение «Временное постановление о радиоуправлении устройств беспроводной зарядки (передачи энергии)».

В нем предлагается с 1 января 2022 года запретить производство, импорт, продажу и использование беспроводных зарядных устройств мощностью более 50 Вт. Вероятно, документ уже вступил в действие.

Несмотря на обилие стартапов, обещающих дешёвую технологию передачи электричества без проводов на расстоянии, реальный продукт не выпускает никто.

Стоит задуматься, ведь первые рабочие прототипы беспилотников, снабжаемых питанием с земли лазерным лучом были успешно испытаны в 2007-2009 годах.

Относительно успешными оказываются только стартапы, предлагающие менять всю инфраструктуру. Как думаете, много стран сможет приобрести дорогу с беспроводной зарядкой от Electreon?

Тем более, что вопросов к эксплуатации этой технологии не меньше, чем к Николе Тесла.

Одно пока можно сказать с уверенностью: когда решатся все существующие НО, мир ждёт новая техническая революция. И это будет совсем другой мир.

iPhones.ru

Фантастика ближе, чем кажется. Но может не наступить никогда.

Рассказать

Физика беспроводной передачи электрической энергии

Беспроводная передача электроэнергии на домашние устройства — это новая технология, но основные принципы известны давно. Когда задействованы электричество и магнетизм, уравнения Максвелла по-прежнему управляются, и передатчики посылают энергию приемникам так же, как и другие формы беспроводной связи. Однако беспроводная передача электричества отличается от них основным назначением, которое заключается в передаче самой энергии, а не закодированной в ней информации.

Электромагнитные поля, участвующие в беспроводной передаче электроэнергии, могут быть довольно сильными, поэтому необходимо учитывать безопасность человека. Воздействие электромагнитного излучения может вызвать проблемы, и существует вероятность того, что поля, создаваемые передатчиками электрической энергии, могут помешать работе носимых или имплантированных медицинских устройств.

Передатчики и приемники встроены в устройства для беспроводной передачи электроэнергии так же, как и аккумуляторы, которые они будут заряжать. Фактические схемы преобразования будут зависеть от используемой технологии. Помимо самой передачи электроэнергии, система БПЭ должна обеспечивать связь между передатчиком и приемником. Это гарантирует, что приемник может уведомить зарядное устройство о том, что аккумулятор полностью заряжен. Связь также позволяет передатчику определять местонахождение и идентифицировать приемник, чтобы точно настроить мощность, подаваемую на нагрузку, и контролировать, например, температуру батареи.

При беспроводной передаче электроэнергии важен выбор концепции ближнего или дальнего поля. Технологии передачи, количество передаваемой энергии и требования к расстоянию влияют на то, будет ли система использовать излучение ближнего или дальнего поля.

Точки, для которых расстояние от антенны значительно меньше одной длины волны, находятся в ближнем поле. Энергия в зоне ближнего поля не излучает, и колебания магнитного и электрического полей независимы друг от друга. Емкостная (электрическая) и индуктивная (магнитная) связи могут использоваться для передачи энергии приемнику, расположенному в ближнем поле передатчика.

Точки, для которых расстояние от антенны больше, чем примерно две длины волны, находятся в дальней зоне (между ближней и дальней зонами есть переходная область). Энергия дальнего поля передается в виде обычного электромагнитного излучения. Передача энергии в дальнем поле также называется пучком энергии. Примерами передачи в дальней зоне являются системы, в которых используются мощные лазеры или микроволновое излучение для передачи энергии на большие расстояния.

Глава II. Практическая часть

2.1. Сборка установки качера Бровин

Рассмотрим этапы сборки данного прибора в домашних условиях.

Базовые элементы Качера:

  1. катушка индуктивности (вторичная обмотка);
  2. индуктор (первичная обмотка);
  3. плата.
  4. корпус

Схема, которой я руководствовался при сборке, выглядит следующим образом:

Рис. 1

Детали установки:

  1. Полихлорвиниловая (ПВХ) труба диаметром не меньше 25 мм и длиной 30 см(от этого будет зависеть дальность свечения лампочек). Я использовал трубу диаметром около 55 мм.
  2. Для изготовления вторичной обмотки качера я использовал медную проволоку, покрытую двойным слоем лака и диаметром 0,20 мм. Её следует намотать на трубу, не менее 1500 витков. (на моем экземпляре качера намотано около 2000 витков.) Через каждые несколько сантиметров я наносил на свежие витки клей, иначе обмотка может сбиться и перепутаться.
  3. Для изготовления первичной обмотки мне потребовался медный провод диаметром 0,5 см, его надо намотать вокруг вторичной катушки. Необходимо сделать около 4 витков. Все обмотки наматываем в одну сторону! Устанавливаем и закрепляем трубу с обмоткой на фанерке или доске, первичную обмотку растягиваем на 1/3 вторичной. Обмотки не должны соприкасаться! Потом вплавляем в трубу сверху металлическую проволоку, размером со швейную иглу и припаиваем к ней конец обмотки. Далее прикручиваем к платформе рядом с катушками радиатор для транзистора, промазываем основание теплопроводной пастой и прикручиваем транзистор к радиатору металлической панелькой.

Для изготовления платы мне понадобились следующие радиодетали:

  1. дроссель,
  2. конденсатор неполярный (1000 v 3000 μF),
  3. 2 резистора (2,2 кОм и 150 Ом),
  4. транзистор NPN, чем мощнее, тем лучше (их можно найти в обычном блоке питания ПК или на плате старых ламповых телевизоров).

Все монтируется, как показано на схеме (рис. 1). Припаиваем провода питания.

Далее я смастерил корпус для качера из ДВП. Кнопку включения питания разместил на верхней панели и зафиксировал ее термоклеем. Корпус и катушку покрыл бесцветным лаком. Конструкция готова! (рис. 2)

Рис. 2

Данное устройство необходимо подключить к блоку питания с напряжением от 12 до 38 v, который я тоже сконструировал самостоятельно (рис. 3)

Рис. 3

Проверка качера осуществляется поднесением люминесцентной лампочки к вторичной обмотке, при правильном соединении она загорится. При касании вторичной обмотки металлическим предметом между ними будет разряд. Если качер не работает, то нужно проверить правильность сборки схемы или попробовать поменять концы первичной обмотки.

2.2. Эффекты, наблюдаемые при работе качера Бровина

Рассмотрим эффекты, наблюдаемые при работе Качера Бровина, который я сконструировал в домашних условиях.

  1. Поднесем лампу дневного света к вторичной обмотке, мы видим, что она загорается. (рис. 4) Если поднести к качеру газоразрядную лампу, то она тоже начинает светиться. (рис. 5) Такой же эффект наблюдается и с другими подобными лампами. Так же в обычной лампе накаливания можно увидеть так называемый тлеющий разряд. (рис. 6)

Рис. 4

Рис. 5

Рис. 6

  1. Во время работы качер создаѐт красивые эффекты, связанные с образованием различных видов газовых разрядов – совокупность процессов, возникающих при протекании электрического тока через вещество, находящееся в газообразном состоянии. Разряды качера Бровина:

Стример (от англ. Streamer) — тускло светящиеся тонкие разветвлѐнные каналы, которые содержат ионизированные атомы газа и отщеплѐнные от них свободные электроны. Стример — видимая ионизация воздуха (свечение ионов), создаваемая ВВ – полем Качера. (рис. 7)

Рис. 7

Дуговой разряд— образуется во многих случаях. Например, при достаточной мощности трансформатора, если к его терминалу близко поднести заземлѐнный предмет, между ним и терминалом может загореться дуга. Иногда нужно непосредственно прикоснуться предметом к терминалу и потом растянуть дугу, отводя предмет на большее расстояние. (рис. 8)

Рис. 8

Заключение

Качер Бровина – оригинальный вариант генератора электромагнитных колебаний. В своей работе я доказал, что в домашних условиях можно изготовить действующую модель качера, а также рассмотрел возможности еѐ практического применения. Хочу отметить, что моя работа в этом направлении не закончена. В перспективе я хочу сделать качер Бровина с аудиомодуляцией. Для этого нужно немного усложнить схему, добавив два резистора и транзистор. (рис. 9) Тем самым мы сможем по цепи питания качера проигрывать музыку. На практике это выглядит красиво и интересно.

Рис. 9

В результате проведѐнных в данной работе исследований, можно сделать вывод о том, что качер Бровина, является простым в изготовлении и настройке прибором. С помощью которого можно продемонстрировать множество красивых и эффектных экспериментов. Во время работы катушки мы наблюдали два типа разрядов.

Анализируя все выше сказанное можно говорить о том, что Качер Бровина может быть с успехом использован в альтернативной энергетике, например, в устройствах получения бесплатной электроэнергии с использованием постоянных магнитов.

В заключение необходимо подчеркнуть следующее: создание новых технологий на основе описанного физического явления может дать России весьма существенные преимущества по отношению к другим странам. Поскольку, проведя в ближайшее время все необходимые исследования этого физического явления и разработав широкую гамму новых устройств и изделий, функционирующих на его основе и предназначенных для широкого практического применения в различных областях и сферах человеческой деятельности, Россия может осуществить новый качественный скачок в своем дальнейшем технологическом развитии. Внедрение российских ноу-хау кардинально изменит всю инфраструктуру энергетики и социума в целом – когда неожиданно откроется и экспериментально подтвердится новый способ получения энергии.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий