Электросчетчики с ограничением мощности это

Принцип действия индуктивного электросчетчика

Естественно, что при постоянно меняющихся нагрузках отслеживать показания ваттметра с секундомером было бы крайне непрактично. Поэтому придумали прибор (электросчетчик), где момент силы, возникающий от электромагнитного взаимодействия катушек напряжения и тока, используется для вращения привода счетного механизма. Теоретически можно считать, что напряжение в сети не меняется, значит, изменение силы электромагнитного взаимодействия катушек прямо пропорционально зависит от тока подключенной нагрузки.

Индукционный счетчик — вид изнутри

В качестве привода счетного механизма в счетчиках используется алюминиевый диск, где катушками напряжения и тока индуцируются вихревые токи, электромагнитное поле которых взаимодействует с магнитными полями данных катушек, создавая момент силы.

Поэтому электромагнитные механические счетчики еще называют индукционными. В индукционном электросчетчике магнитопроводы катушек тока и напряжения размещены под углом 90º и образуют зазор, в котором размещен алюминиевый диск, что позволяет создавать в нем момент силы для его вращения.

Устройство индукционного электросчетчика

Из школьной физики известно, что сила, постоянно воздействующая на тело без помех, заставляет его ускоряться до бесконечности. Таким образом, в идеальном механизме счетчика (без трения) постоянная мощность раскрутила бы диск до бесконечных оборотов. Поэтому в устройстве электросчетчика имеется постоянный магнит для торможения алюминиевого диска привода счетного устройства.

Поскольку алюминий является немагнитным металлом, сила торможения зависит только от скорости вращения диска. Правильная настройка баланса между ускоряющей диск силой и тормозным моментом позволяет установить зависимость вращения привода счетного механизма только от потребляемой мощности и устранить самоход и вращение в обратную сторону. По данному принципу работают индукционные однофазные и трехфазные счетчики электрической энергии, у которых на одном валу имеется два алюминиевых диска.

Трехфазный индукционный электросчетчик

Преимущества и недостатки индукционных электросчетчиков

Описанное выше устройство счетного механизма используется в различных моделях счетчиков электроэнергии на протяжении многих десятилетий благодаря простоте и надежности конструкции. Катушка напряжения, имеющая много витков, намотанная тонким проводом, диаметром 0,06 – 0,12 мм имеет большую стойкость к длительным перенапряжениям – очень часто однофазные электросчетчики находились под напряжением почти 380В из-за обрыва ноля, но в последствии продолжали исправно работать.

Токовая катушка имеет несколько витков с поперечным сечением, достаточным для того, чтобы выдерживать ток кратковременного короткого замыкания. Поскольку в индукционных электросчетчиках нет других электротехнических элементов и радиодеталей, они очень устойчивы к всплескам напряжения и электромагнитным влияниям разрядов молний. Простой и дешевый счетный механизм, состоящий из червячной передачи на валу алюминиевого диска и цифрового барабана, позволяет индукционным счетчикам исправно служить на протяжении десятилетий в сложных климатических условиях.

Несложное устройство счетного механизма индукционного электросчетчика

Из-за несовершенной конструкции, трения и старения механизмов индукционные электросчетчики имеют существенные недостатки:

  • низкий класс точности;
  • большая погрешность, увеличивающаяся при небольших токах нагрузки;
  • значительное собственное потребление электроэнергии;
  • отсутствие учета реактивной энергии у бытовых счетчиков;
  • учет электрической энергии происходит только в одном направлении;
  • отсутствует защита от взлома, вмешательства в работу и хищения электроэнергии.

Пломба на устаревшем индукционном электросчетчике является единственной защитой от несанкционированного доступа внутрь корпуса Большинство описанных выше недостатков индукционных счетчиков на руку их владельцам, так как учет электроэнергии происходит с погрешностью, выгодной для получателя. Придумано множество способов обмана индукционного счетчика. Поэтому многие поставщики электрической энергии стараются заменить устаревшие убыточные для них электросчетчики на новые более точные гибридные или электронные счетчики электроэнергии у своих потребителей. В некоторых странах производится бесплатная замена устаревших индуктивных электросчетчиков в принудительном порядке.

Устаревшие и убыточные для поставщиков электроэнергии индукционные счетчики активно выводятся из эксплуатации

Система АСКУЭ для жилого многоквартирного дома

Автоматизированная система контроля и учета электроэнергии (АСКУЭ) в жилом доме устанавливается для нескольких целей:

  • удаленного сбора показаний электросчетчиков; получения профилей мощности и параметров электроэнергии; внедрения многотарифного учета электроэнергии; удаленного отключения или ограничения нагрузки потребителей; получения оповещений о вмешательстве в работу приборов учета; выявление и сокращение потерь, планирование нагрузки электросети.

Выгоды от внедрения АСКУЭ в жилом доме получает не только управляющая или сбытовая компания, но и жильцы. Автоматизация исключает собственников из процесса сбора и передачи показаний, сокращает размер оплаты на общедомовые нужды.

При создании АСКУЭ в многоквартирных домах в первую очередь ориентируются на следующие факторы:

  • стоимость точки учета — усредненная цена на оборудование и работ по монтажу; стабильность передачи данных от счетчиков на пульт диспетчера; функциональность АСКУЭ, возможность получения профилей, удаленное управление; критерии масштабирования, увеличения количества точек учета системы.

Ключевая особенность АСКУЭ «СТРИЖ» — использование LPWAN-технологии для передачи данных по радио. Большая дальность передачи и высокая проникающая способность сигнала позволяют обходиться без ретрансляторов и mesh-топологии. Меньше оборудования — дешевле смета, без потери надежности.

Перед внедрением АСКУЭ для наших многоквартирных домов стояли перед выбором использовать PLC или беспроводные технологии. У PLC нет никаких гарантий в бесперебойной работе связи. Любой энергопотребляющий прибор может привести к таким помехам, что получить данные от модемов будет невозможно. Осложняется это еще тем, что отследить такие вещи довольно сложно. В процессе наладки система будет работать, но в тот момент когда кто-нибудь из жильцов придет к себе домой и включит в сеть свой чудо телевизор, выпущенный никому неизвестными умельцами, и АСКУЭ перестает работать. Были прецеденты, обходили дома в поисках помехи. У беспроводных решений тоже есть минусы — обходятся дорого, при этом надежность оставляет желать лучшего. «СТРИЖ» стал для нас хорошим компромиссным выходом из ситуации. Задача была решена без лишних затрат и с требуемой степенью надежности.

. Главный инженер УК «Флагман», г. Москва

голоса

Рейтинг статьи

Функциональные возможности

  • Счетчик обеспечивает учет и вывод на индикацию:
    • количества потребленной и отпущенной активной энергии раздельно и нарастающим итогом суммарно по четырем тарифам на конец месяца и за 12 предыдущих месяцев;
    • графиков активных мощностей потребления, усредненных на заданном интервале времени (30 минут) не менее 60 суток; значение активной мощности, усредненное за прошедший трехминутный минутный интервал;
    • количества потребленной активной электроэнергии нарастающим итогом суммарно и раздельно по 4-м тарифам на конец суток и за предыдущие 44 суток;
    • действующего тарифа и направления электроэнергии (отпуск, потребление);
    • максимальное значение активной мощности, усредненной на 30-минутном интервале, за текущий и прошедших 12 месяцев раздельно по четырем тарифам.
  • Счетчик измеряет и показывает:
    • среднеквадратические значения фазных напряжений и токов;
    • активную мощность.
  • Предусмотрена возможность задания следующих параметров:
    • текущее времени и даты;
    • разрешение перехода на “летнее” время (с заданием месяцев перехода на “зимнее”, “летнее” время);
    • до 12-ти дат начала сезона;
    • до 12-ти зон суточного графика тарификации и до 36-ти графиков тарификации;
    • до 32-х исключительных дней (дни, в которых тарификация отличается от общего правила и задается пользователем);
    • коэффициентов трансформации тока и напряжения;
    • лимитов по потреблению и мощности с процентом превышения для работы сигнализации по каждому тарифу.

Перечень АСКУЭ сторонних производителей, адаптированных для работы cо счетчиком СЕ303

Куда обратиться для подключения счетчика и можно ли это сделать самому?

Установить новый счетчик в квартире можно несколькими способами:

  • привлечь к этому сотрудников компании-поставщика;
  • обратиться к опытному электрику;
  • установить ПУ своими силами.

При самостоятельной замене важно соблюдать некоторые правила:

  • устанавливайте ПУ на высоте не менее 1 метра от пола;
  • счетчик должен висеть максимально ровно, предельно допустимое отклонение – 1%;
  • прибор должен располагаться в доступном месте;
  • помещение должно быть сухим, прогреваемым в холодное время года;
  • если счетчик устанавливается в частном доме на улице, монтируется он в специальной герметичном коробе.

Если со дня производства прибора прошло менее двух лет, поверять счетчик не надо. Для трехфазных моделей этот срок сокращается до 12 месяцев.

Каким бы образом ни было произведено подключение счетчика электроэнергоии , после этого обязательно надо вызвать специалиста из энергоснабжающей компании, который установит тарифы, поставит пломбу и запрограммирует часы. Он также запишет начальные показания прибора.

Если речь идет о замене, самостоятельно снимать старый счетчик нельзя, поскольку повредится пломба. Данные старого и нового прибора послужат для расчета потребленной электроэнергии в текущем месяце.

Достоинства и недостатки

Помимо возможности отключения избыточной мощности ограничитель мощности обладает целым рядом дополнительных характеристик. Они уникальны и очень полезны. Он помогает не только следить за не превышением мощности, но и повышать безопасность энергосети, следить за безопасностью эксплуатируемого оборудования.

К достоинствам можно отнести наличие следующих технических характеристик у ограничителей:

Он следит не только за активной частью мощности, которую дают обычные электронагреватели и другие активные потребители. Он отслеживает также и реактивную составляющую потребления, которую дают электродвигатели. Реактивную мощность невозможно отследить другими устройствами.

Рабочие характеристики этого аппарата не зависят от температуры окружающей среды, он работает с одинаковой точностью в широком диапазоне температур. В отличие от него автоматический выключатель может длительное время не срабатывать при пониженных температурах, создавая при этом опасные перенапряжения в сети.

Это устройство обладает цветовой индикацией. В самых простых устройствах один светодиод показывает наличие избыточной нагрузки, в более совершенных устройствах производится индикация текущей потребляемой мощности на цифровом дисплее, которая дает текущую информацию о нагрузке в сети и другие параметры.

При превышении заданного уровня потребления электроэнергии потребитель отключается не мгновенно, а в соответствии с некоторой задержкой, которая выставляется вручную. Это позволяет пропускать короткие пиковые нагрузки и не давать работать сети с большими длительными нагрузками. Например, выставив нужное время можно дать время мощному электрочайнику вскипятить воду, но не допустить более длительных нагрузок.

На нем можно выставлять значение потребления, на которое он будет срабатывать. Для установки новых значений по нагрузке не требуется покупка новых приборов. Благодаря этому можно следить за отсутствием хищений электроэнергии.

Это устройство включает нагрузку самостоятельно по истечении заданного времени. Это время выставляется на устройстве вручную. Выполняется так называемое автоматическое повторное включение. Благодаря этому нет необходимости открывать электрический щит при каждом срабатывании. Это очень удобно не только для потребителей, но и для снабжающих организаций. Они могут ограничивать доступ к электрическому щиту, так как включение электричества осуществляется автоматически по истечении определенного времени.

Ограничитель не выполняет функции по отключению сети. Он измеряет ток, проходящий через силовую линию, и подает управляющие сигналы на пускатели, которые управляют системой. Поэтому нет необходимости создавать дополнительные разрывы в сети.

Ограничители потребления могут выполнять функцию по защите трехфазных электродвигателей при обрывах фазы, могут контролировать не симметрию токов и реагировать на неё. Дополнительной функцией является защита от некачественного напряжения. В этом случае он контролирует питающее напряжение всех трех фаз. Аппарат может выполнять функцию устройства защитного отключения (УЗО). При этом он контролирует токи уходящие из системы в землю.

К недостаткам этого устройства можно в первую очередь можно отнести его дороговизну. Он существенно дороже обыкновенного автомата. Сам ограничитель не может производить отключение и включение нагрузок с большими токами. Вместе с ним необходимо устанавливать магнитные пускатели или контакторы.

Ограничитель подает небольшой ток на управляющие катушки пускателя и он осуществляет включение или выключение силовой линии. Стоимость электромонтажных работ дополнительно увеличивается на стоимость этого оборудования. Кроме того необходимо регулярно следить за исправностью пусковых устройств, так как в них есть движущиеся части.

И наконец, стоит отметить, что эти аппараты требуют дополнительного пространства в электрическом щите. В силу этих причин потребители по собственному желанию редко устанавливают подобное оборудование. Оно в большинстве случаев устанавливается по требованию поставщиков электроэнергии в соответствии с согласованными проектами по подключению.

Особенности подключения

ОМ-110

Для установки ограничителя мощности ОМ-110 можно отметить следующие особенности:

  • Установить ОМ–110 на штатное место (можно под ДИН рейку).
  • Подключить сеть 220 В, соблюдая соответствие нулевой и фазной шины.
  • Продеть провод нагрузки через специальное отверстие – там находится трансформатор тока, который и является датчиком потребленной электроэнергии.
  • Подключить контактор, согласно схемы. Работает ОМ-110 только при наличии контактора, который будет коммутировать напряжение на нагрузку.
  • Установить потенциометром мощность отключения.
  • Выставить время работы ОМ-110 в режиме перегрузки.
  • Задать время возврата ограничителя в исходное положение после срабатывания.

Схема подключения ОМ-110:

Более подробно увидеть процесс монтажа вы можете на видео ниже:

После подключения необходимо проверить правильность работы ограничителя. Подать питание и подключить нагрузку меньшую расчетной. Должен гореть зеленый светодиод. Потом нужно подключить нагрузку, которая выше установленной. Должен загореться светодиод «перегрузка» и по истечении времени, которое устанавливается регулятором «задержка отключения», он должен отключить все потребители. При необходимости время можно откорректировать. После отключения возврат в исходное состояние происходит автоматически. Время возврата также можно изменить регулятором «повторное включение». Установка и настройка работы регулятора окончена.

ОМ-310

ОМ-310 используют при напряжении сети 380 В и мощности 3-40 кВт. Установка ограничителя мощности этой серии не отличается от предыдущего. Основное отличие состоит в том, что на него нужно подключить три фазы 380 В и нулевой провод. На лицевой панели два индикатора, позволяющие проводить настройку и контроль работы прибора, а также светодиодные индикаторы. Настройка этого устройства несколько отличается от ОМ-110. Достоинством является возможность подключения к компьютеру и его настройки.

Монтаж состоит в подключении всех трех фаз и нулевого провода к входным клеммам, как показано на схеме ниже:

Наглядная инструкция по монтажу предоставлена на видео:

Нагрузка подключается через трансформаторы тока. Устанавливают параметры потребляемой мощности, времени отключения при перегрузке и времени восстановления после отключения. Обязательно использование контактора, который коммутирует нагрузку.

ОМ-630

ОМ-630 – трехфазный ограничитель мощности. Подключение происходит согласно схемы. Работает только с трансформаторами тока и реле нагрузки.

  1. Подключить фазные провода и провод нулевой.
  2. Присоединить контактор или несколько по потребности
  3. Протянуть провода нагрузки через установленные отверстия в корпусе прибора
  4. Подключить питание, после чего должен загореться светодиод, а через заданное время индикатор желтого цвета и включиться нагрузка.

Наглядно предоставлено правильное подключение на фото и схеме ниже:

Установка максимальной мощности, времени отключения и времени восстановления выполняются с помощью переключателей. Все регуляторы расположены на лицевой панели. Кроме указанных выше функций в ОМ-630 введена функция счетчика отключений. При срабатывании ограничителя в течении часа более определенного количества раз, нагрузка отключается на 10 минут. Эта регулировка тоже присутствует на лицевой панели.

На видео ниже наглядно показывается, как подключить и настроить ОМ-630:

Данные аппараты, независимо от марки и типа защищают не только поставщика электроэнергии от перерасхода и хищения, но и потребителя от перегрузки домашней электросети и снижения вероятности возникновения пожара от перегрева изношенной электропроводки, в случае несоответствия мощности сети и потребления. Надеемся, вам были полезные наши советы и предоставленные инструкции по подключению ограничителей мощности 110, 310 и 630-й серии.

Будет интересно прочитать:

Устройство счётчика электроэнергии с удалённой передачей данных

Приборы учёта с дистанционной передачей информации представляют собой устройство, преобразующее аналоговый сигнал в импульсы, при подсчёте которых и вычисляется объём потребляемой электроэнергии. Отличия электронных электросчётчиков от индукционных состоят не только в отсутствии подвижных механических элементов. Основным отличием является расширенный функционал прибора, а именно:

  • увеличенный временной интервал входного напряжения;
  • удобная организация системы многотарифного учёта потреблённого электричества;
  • возможность просмотра данных на предыдущие учётные периоды;
  • измерение потребляемой мощности;
  • возможность подключения к системам автоматического дистанционного сбора и пересылки информации поставщику.

Устройство счётчика с удалённой передачей данных

В плане конструкции современный электронный счётчик представляет собой корпус, в котором расположен измерительный трансформатор тока, клеммная колодка и печатная плата, оснащённая электронными элементами схемы.

Строение прибора учёта электроэнергии, дистанционно передающего данные

Современные модели электросчётчиков электронного типа включают в себя такие обязательные элементы, как:

  • жидкокристаллический дисплей;
  • таймер, отображающий фактическое время;
  • трансформатор тока;
  • выход для подключения телеметрии;
  • элементы контроля и управления;
  • источник питания для работы электронной схемы электросчётчика;
  • супервизор;
  • оптический порт, устанавливаемый опционно.

Жидкокристаллический дисплей представляет собой многоразрядный буквенно-цифровой индикатор для отображения рабочих режимов прибора учёта электронного типа. Кроме того, ЖК-дисплей показывает данные о потреблённой электроэнергии, фактическое время и дату.

Автоматизированную систему простому пользователю самостоятельно не создать

Независимый источник питания в счётчике предназначен для обеспечения работы электронной схемы. К нему также подключён супервизор, который создаёт сигнал сброса для микроконтроллера, возникающий при включении или отключении электропитания. Кроме того, супервизор позволяет мониторить изменения входного напряжения.

Часы, отображающие фактическую дату и время. В некоторых моделях счётчиков эту функцию выполняет микроконтроллер. Для снижения нагрузки на данную деталь, как правило, устанавливают отдельную микросхему, которая снижает расход мощности микроконтроллера, перенаправляя высвобождённую энергию на решение более важных задач.

Современные электронные электросчётчики представлены в большом ассортименте

Телеметрический выход счётчика − это разъём, предназначенный для подключения прибора к персональному компьютеру, ноутбуку или системе удалённой передачи данных. Оптический порт установлен для снятия информации непосредственно с прибора учёта электроэнергии.

Микроконтроллер

Микроконтроллер является наиболее важным элементом электросчётчика с дистанционным снятием показаний. На нём лежит выполнение основной части функций:

  • преобразование входного сигнала от трансформатора тока в цифровую информацию;
  • обработка данных;
  • вывод полученной информации на ЖК-дисплей;
  • приём команд от элементов управления;
  • управление интерфейсами.

Количество и разнообразие функций непосредственно зависит от установленного ПО. В настоящее время приборы учёта совершенствуются, пополняясь новыми дополнительными функциями. К таким функциям следует отнести возможность мониторить состояние электросети и передавать полученную информацию на диспетчерский пульт поставщика электроэнергии.

Простой набор из счётчика и УЗО отходит в прошлое

Часто производители оснащают приборы учёта функцией регулировки уровня мощности электросети. В случае превышения потребляемой мощности, счётчик автоматически прерывает доступ к электропитанию. Это стало возможным благодаря внедрению в цепь контактора, который контролирует подачу напряжения в бытовую электросеть. Также прибор может отключить подачу электроэнергии, в случае превышения установленного лимита, или если закончилась предоплата за поставляемое электричество.

Средства учета электроэнергии

Средства учета электроэнергии — это устройства, обеспечивающие измерение и учет; к ним относятся: счетчики электрической энергии (активной и реактивной); измерительные трансформаторы тока и напряжения; телеметрические датчики; информационно-измерительные системы и их линии связи. Измерительным комплексом средств учета электроэнергии называется совокупность соединенных между собой по установленной схеме устройств. Совокупность измерительных комплексов, установленных на одном объекте (например, на предприятии), называется системой учета электроэнергии.

Различают счетчики непосредственного включения в сеть и счетчики, предназначенные для подключения к измерительным трансформаторов тока и напряжения. В последнем случае показания счетчика умножают на расчетный коэффициент Кр, равный произведению соответствующих коэффициентов трансформации: Ар = К,Ки. Есть счетчики, заранее отградуированные для работы с конкретными измерительными трансформаторами, которые указаны на их табличке. Такие счетчики называются трансформаторными; пересчет их показаний не требуется.

В качестве расчетных приборов учета используют однофазные и трехфазные счетчики двух типов: индукционные и статические (электронные). В индукционном счетчике имеется подвижный диск, по которому протекают токи, индуцированные магнитным полем токопроводящих катушек. В электронном счетчике переменный ток и напряжение воздействуют на твердотельные (электронные) элементы для создания на выходе импульсов, число которых пропорционально измеряемой активной энергии.

Счетный механизм представляет собой электромеханическое или электронное устройство, содержит запоминающее устройство и дисплей. В последние годы повсеместно идет переход с индукционных счетчиков на электронные, обеспечивающие более высокую точность, возможность хранения и передачи данных, меньшую вероятность вмешательства в работу прибора в целях искажения его показаний. Электронный счетчик может быть многотарифным, если в нем есть набор счетных механизмов, каждый из которых работает в установленные интервалы времени, соответствующие различным тарифам. Использование таких счетчиков дает потребителю возможность выбора тарифа, дифференцированного по времени суток.

Система учета электроэнергии должна быть защищена от воздействия электромагнитных полей (сверх установленных техническими условиями), механических повреждений и несанкционированного доступа. На счетчиках устанавливают два типа пломб: заводские пломбы на креплении кожухов, не допускающие проникновение внутрь механизма счетчика, и пломбы организации (субъекта электроэнергетики), с которой осуществляются финансовые расчеты.

Счетчики активной энергии изготавливают следующих классов точности (обозначает наибольшую относительную погрешность в процентах): индукционные — 0,5; 1,0; 2,0 и 2,5; электронные — 1; 2; 0,2S; 0,5S. Требования к классу точности определяют в зависимости от цели и места установки системы учета; ряд требований определены в правовых и нормативных документах. Рынок электроэнергии предъявляет повышенные требования к точности приборов учета.

На розничных рынках электроэнергии должны использоваться приборы учета следующих классов точности:

  • для потребителей, присоединенная мощность которых не превышает 750 кВ • А (в том числе граждан), — 2,0 и выше; более 750 кВ • А — 1,0 и выше.
  • При подключении новых потребителей до 750 кВ • А или замене приборов учета классы точности следует повышать до 1,0 на напряжении до 35 кВ и до 0,5S на напряжении ПО кВ и выше.
  • Потребители с присоединенной мощностью более 750 кВА обязаны устанавливать приборы учета, позволяющие измерять почасовые объемы потребления электрической энергии, класса точности 0,5S и выше, в том числе включенные в состав автоматизированной измерительной системы коммерческого учета с хранением и передачей данных на вышестоящие уровни.

Если расчетный прибор учета расположен не на границе балансовой принадлежности электрических сетей, то объем отпущенной потребителю электроэнергии обычно корректируется с учетом величины нормативных потерь электрической энергии, возникающих на участке сети от границы до места установки прибора учета. Величина нормативных потерь определяется в соответствии с методикой выполнения измерений, согласовываемой сторонами. Возможно применение приборов учета, в которых заложены соответствующие алгоритмы определения потерь, тогда их показания используют для расчетов.

Что такое смарт счётчики электроэнергии и как они работают

Нашумевший российский закон об умных счетчиках — ФЗ от 27.12.2018 № 522-ФЗ был утвержден 29 декабря 2018 года. Этим законом вносятся поправки в ФЗ от 26.03.2003 № 35-ФЗ.

Нововведения, которые вступят в свою силу с июля 2020, коснутся пока только системы учёта потреблённой электроэнергии. Умные счетчики воды используются и сейчас, но они не обязательны для всех. Законодатели обещают, что через некоторое время дойдет очередь до счетчиков воды, тепла и газа. Но это случится не в 2020 году, а значительно позже.

Умный счётчик – это прибор учёта нового поколения, умеющий самостоятельно передавать информацию в энергоснабжающую организацию. При этом умный счётчик электроэнергии делает это своевременно и безошибочно. Исключая проблемы человеческого фактора, то есть исчезнет необходимость:

  • Вспоминать дату снятия показаний.
  • Записывать цифры.
  • Звонить в управляющую компанию или передавать данные по Интернету.

Что снимает много утомительных проблем.Кроме того, смарт счётчик может автоматически:

  • Менять часовой тариф.
  • Защищать оборудование во время аварий, сигнализируя в диспетчерскую службу.
  • Информировать об отказе и неисправности в работе квартирного, и общедомового прибора учёта.
  • Передавать информацию о попытках несанкционированного доступа к электрическому счётчику и незаконного подключения.
  • Показывать собственнику уровень задолженности.
  • Сохранять полученные сведения.

Новые счётчики, в отличие от старых индукционных или электронных счётчиков, дополнительно оборудованы контроллером. Устройством, позволяющим достичь смарт целей в области информированности и управляемости потоками электрической энергии.

Интерфейс контроллера надёжно обеспечивает беспроводную передачу информации в интернет с помощью технологий:

  • Wi-Fi – с помощью роутера.
  • GPRS – посредством сим-карты.
  • LPWAN – через вышку, подключённую к серверу.

Умные счётчики электроэнергии во многих российских регионах используются уже сейчас.Такие приборы учёта применяются пока в основном в частном секторе. Их устанавливают на опоре воздушной линии электропередач.

Счётчики такого типа автоматически передают информацию по зашифрованным каналам в специализированный центр учёта. История показаний и потреблённого количества электроэнергии хранится в архиве прибора и в базе данных центра. Потребителям больше не нужно снимать показания и передавать их в Энергосбыт.

Некоторые подобные приборы оснащены специальными пультами, позволяющими потребителю дистанционно контролировать расход электроэнергии, не выходя из дома и без визуального осмотра самого энергомера.

С июля 2020 года необходимо будет устанавливать именно такие приборы учёта, вне зависимости от того, многоквартирный это дом или частный.

Что такое превышение разрешённой мощности

Допустим, что у нас есть объект, на который установленная электрическая мощность равна, например, 15 кВт. Объект не примут в эксплуатацию, если ввод и распределение электроэнергии не соответствуют выданному ТУ на подключение к электросети или модернизации действующей системы. Она обычно ограничивается вводными автоматическими выключателями.

Но допустим вы несанкционированно, другими словами самостоятельно, заменили автоматический выключатель на больший по току. Или подключились к сети в обход прибора учета.

В результате этого вы сможете подключать большую мощность потребителей электроэнергии, хотя по договору делать это вам запрещено. Если в договоре указана разрешённая мощность 15 кВт, а при проверке Вашей электроустановки представителями энергоснабжающей организации замеры токовой нагрузки на вводе показали, что установленная мощность по расчету составила, например, 20 кВт. Тогда факт превышения считается зафиксированным.

После чего к вам пришел работник энергосбыта и замерил фактическое потребление по вводу, например, 20 кВт. Тогда факт превышения считается зафиксированным.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий