Электроприборы для постоянного тока

Взаимосвязь параметров электрического тока

Элементарная электроцепь постоянного тока включает в себя источник электроэнергии, отрицательный и положительный контакты которого связаны шунтом или проводником. Движение заряда по проводнику осуществляется под воздействием электрического поля. Однако, этот перенос электронов не приводит к уравниванию потенциалов, т.к. в любой отрезок времени, к первому концу цепи поступает абсолютно такое же количество заряженных частиц какое из него переместилось к противоположному контакту. Таким образом разность потенциалов, которую принято называть напряжением, остается неизменяемой величиной.

Перемещению электрических зарядов в цепи, препятствует внутреннее сопротивление материала проводника. Взаимосвязь параметров электротока была выведена опытным путем Г. Омом. В математическом виде закон Ома можно представить так: I=U/R, где собственно I – сила тока, U – напряжение (разность потенциалов) и R – сопротивление на соответствующем участке цепи.

Собственно, из уравнения видно, что напряжение имеет прямую зависимость от силы тока и сопротивления (U=I х R), а величина силы тока обратно пропорциональна сопротивлению.

Последовательное соединение элементов электрической сети постоянного тока

Параметры электроцепи постоянного тока, в случае последовательного соединения устройств, имеют некоторые особенности. Так, например, сила тока (I) остается постоянной на всех элементах электрической схемы, а вот напряжение (U) является суммой напряжений на каждом участке схемы. Рассмотрим пример электрической цепи с последовательно включенными тремя проводниками с сопротивлением R1, R2 и R3. Согласно закону Ома, напряжение U1 = IxR1, U2 = IxR2, U3 = IxR3. Следовательно, U общ = U1+U2+U3= IxR1+ IxR2= IxR3 = I (R1+R2+R3).

Из уравнения видно, что такой параметр электрической цепи как общее сопротивление (R общ), при последовательном соединении, будет равен сопротивлению каждого отдельно взятого проводника. Последовательное подключение электрических устройств позволяет снизить нагрузку на отдельный элемент, что продлевает срок службы, но при этом теряется мощность.

Параметры электрической цепи. Параллельное соединение элементов

Параллельная цепь характеризуются общими контактами в местах ввода и вывода основного провода. В данной ситуации напряжение на всех элементах цепи остается одинаковым, т.е. U1=U2=U3. А вот для силы тока, будет характерна обратная зависимость от сопротивления каждого участка, т.е. I х=U/Rx. Параллельное соединение электроприборов является наиболее распространенным способом в бытовых условиях.

Параметры цепи при смешанном соединении в электрической цепи

Смешанное подключение проводников представляет собой электрическую цепь, в которой элементы включены комбинировано, т.е. как последовательно, так и параллельно друг другу. Для определения конкретных параметров, в этом случае, вся схема разбивается на самостоятельные участки в соответствии со способом подключения. Индивидуальные параметры рассчитываются для каждого участка отдельно. Необходимо отметить, что параллельно включенные участки, могут состоять из ряда последовательно соединенных элементов.

Виды розеток

В зависимости от условий эксплуатации розетки выполняют с разными уровнями защиты, которые обозначаются кодом IP и следующими за ним двумя числами. Первое (0-6) означает, насколько устройство не допускает попадание внутрь предметов, пыли и т.п. Следующее (0-8) предусматривает защиту от воды. Если розетка обозначена кодом IP68, значит, она имеет самую высокую защиту от внешних воздействий.

По типам изделия обозначаются латинскими буквами. Отечественные выпускаются без заземления (С) и с заземлением (F).

Разновидности розеток

Приборы группы AC (~) предназначены для переменного тока. Постоянный ток обозначается DC (-).

Главным показателем является сила тока, которая допускается для той или иной розетки. Если на ней есть обозначение 6 А, то суммарная подключаемая нагрузка не должна превышать указанного количества ампер. При этом не имеет особого значения, переменный ток через нее проходит или постоянный.

Сколько нагрузки выдержит соединение, оценивают по общей мощности всех подключенных приборов. Для таких потребителей, как микроволновая печь, посудомоечная или стиральная машина используются отдельные розетки не менее чем на 16 ампер с обозначением типа тока. Особое место занимает электроплита, для которой сила номинального тока составляет 25 ампер или больше. Ее следует подключать через отдельное УЗО. За основу берется номинальный ток – количество ампер, которое способна пропустить розетка в течение длительного времени.

Розетка для электроплиты

Ампер – это единица измерения, по которой измеряется сила тока. Если указана только паспортная мощность, допустимый ток составит I = P/U, где U = 220 вольт. Тогда при мощности 2200 ватт сила тока будет равна 10 ампер.

Обратите внимание на подключение к розеткам электроприборов через удлинители. Здесь легко можно ошибиться с определением, сколько потребуется суммарной мощности нагрузки

Кроме того, удлинитель также должен соответствовать предъявляемым требованиям, поскольку у него имеются свои розетки с маркировкой.

Для переменного тока полярность в штепсельных соединениях особенно не нужна. Фазу обычно находят, если надо подключать к светильникам автомат или однополюсный выключатель. При их отключении прикосновение к нулевому проводу будет не таким опасным.

Розетки расширенной функциональности

Сейчас выпускают новые типы розеток с новыми функциями:

  1. Встроенные таймеры отключения.
  2. Переключение типа тока.
  3. С индикацией величины нагрузки (цвет меняется от зеленого до красного).
  4. Со встроенным УЗО.
  5. С автоматической блокировкой.

https://youtube.com/watch?v=RUChbRkF6uk

Почему переменный ток используется чаще

Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.

Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.

Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями . Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.

Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.

В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.

При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.

Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.

Как устроен генератор переменного тока — назначение и принцип действия

Что такое активная и реактивная мощность переменного электрического тока?

Что такое частотный преобразователь, основные виды и какой принцип работы

Что такое конденсатор, виды конденсаторов и их применение

Как условно обозначаются элементы на электрических схемах?

Что такое варистор, основные технические параметры, для чего используется

голоса

Рейтинг статьи

Краткая история электричества

Кто изобрел электричество? А никто! Люди постепенно понимали, что это такое и как им пользоваться.

Все началось в 7 веке до нашей эры, в один солнечный (а может и дождливый, кто знает) день. Тогда греческий философ Фалес заметил, что, если потереть янтарь о шерсть, он будет притягивать легкие предметы.

Потом были Александр Македонский, войны, христианство, падение Римской империи, войны, падение Византии, войны, средневековье, крестовые походы, эпидемии, инквизиция и снова войны. Как вы поняли, людям было не до какого-то там электричества и натертых шерстью эбонитовых палочек.

В каком году изобрели слово «электричество»? 1600 году английский естествоиспытатель Уильям Гилберт решил написать труд «О магните, магнитных телах и о большом магните — Земле». Именно тогда и появился термин «электричество».

Через сто пятьдесят лет, в 1747 году Бенджамин Франклин, которого мы все очень любим, создал первую теорию электричества. Он рассматривал это явление как флюид или нематериальную жидкость.

Именно Франклин ввел понятие положительного и отрицательного зарядов (до этого разделяли стеклянное и смоляное электричество), изобрел молниеотвод и доказал, что молния имеет электрическую природу.

Бенджамина любят все, ведь его портрет есть на каждой стодолларовой купюре. Помимо работы в точных науках, он был видным политическим деятелем. Но вопреки распространенному заблуждению, Франклин не был президентом США.

Дальше пойдет перечисление важных для истории электричества открытий.

1785 год – Кулон выясняет, с какой силой противоположные заряды притягиваются, а одноименные отталкиваются.

1791 год – Луиджи Гальвани случайно заметил, что лапки мертвой лягушки сокращаются под действием электричества.

Принцип работы батарейки основан на гальванических элементах. Но кто создал первый гальванический элемент? Основываясь на открытии Гальвани, другой итальянский физик Алессандро Вольта в 1800 году создает столб Вольта – прототип современной батарейки.

На раскопках рядом с Багдадом нашли батарейку возрастом больше двух тысяч лет. Какой древний айфон с ее помощью подзаряжали – остается загадкой. Зато известно точно, что батарейка уже «села». Этот случай как бы говорит: может быть, люди знали об электричестве намного раньше, но потом что-то пошло не так.

Уже в 19 веке Эрстед, Ампер, Ом, Томсон и Максвелл совершили настоящую революцию. Был открыт электромагнетизм, ЭДС индукции, электрические и магнитные явления связали в единую систему и описали фундаментальными уравнениями.

Кстати! Если у вас нет времени, чтобы самостоятельно разбираться со всем этим, для наших читателей сейчас действует скидка 10% на любой вид работы

20 век принес квантовую электродинамику и теорию слабых взаимодействий, а также электромобили и повсеместные линии электропередач. Кстати, знаменитый электромобиль Тесла работает на постоянном токе.

Конечно, это очень краткая история электричества, и мы не упомянули очень много имен, которые повлияли на прогресс в этой области. Иначе пришлось бы написать целый многотомный справочник.

Второе правило Кирхгофа

Второе правило Кирхгофа относится к замкнутому контуру в цепи. Замкнутый контур – это любая последовательность соединенных элементов внутри разветвленной электрической цепи, такая, что первый и последний элементы также соединены.

Алгебраическая сумма напряжений при обходе контура на элементах равна алгебраической сумме ЭДС в источниках, присутствующих в контуре. Если направление ЭДС или напряжение совпадает с направлением обхода – оно считается положительным, если не совпадает – отрицательным: $U_1+U_2+… =mathscr{E}_1+mathscr{E}_2+…$.

Рис. 2. Второе правило Кирхгофа.

Данное правило означает, что во-первых, источниками разности потенциалов в контуре являются источники ЭДС, а во-вторых, при обходе контура потенциал, изменяясь, все равно возвращается к исходному значению.

Какой ток в сети 220?

Чаще всего, современные домашние розетки 220В рассчитаны на максимальный ток 10 или 16 Ампер. Некоторые производители заявляют, что их розетки выдерживают и 25 Ампер, но таких моделей крайне мало. Старые, советские розетки, которые еще встречаются в наших квартирах, вообще рассчитаны всего на 6 Ампер.

Какой ток у нас в розетках?

Параметры домашней сети всегда известны: переменный ток, напряжение 220 вольт и частота 50 герц. Они подходят преимущественно для электродвигателей, холодильников и пылесосов, а также ламп накаливания и многих других приборов.

Какая сила тока в сети 220?

Стандартные розетки рассчитаны на силу тока в 16 Ампер. Поскольку напряжение в сети составляет 220 Вольт, то максимальная мощность составляет 16 Ампер * 220 Вольт = 3 520 Ватт или 3,5 Киловатт.

Какой ток у нас в сети?

Переменный ток — это тот ток, который у нас в розетке. Он называется переменным, потому что направление движения электронов постоянно меняется. У переменного тока из розеток бывает разная частота и электрическое напряжение.

Как протекает ток в розетке?

Провода в розетке, в лампочке и нить накаливания сделаны из металла, поэтому, когда по ним протекает ток, он создается движением электронов, которые текут из розетки через лампочку обратно в розетку. Проходя через спираль лампочки, электроны накаливают ее до такой высокой температуры, что лампочка начинает светиться.

https://youtube.com/watch?v=UaZIiOYgjwQ

Какой ток используют в России?

Параметры сетевого напряжения в России Производители электроэнергии генерируют переменный ток промышленной частоты (в России — 50 Гц).

Сколько ампер при 12 вольт?

А значит, если имеем дело с автомобильной сетью на 12 вольт, то 1 ампер — это 12 Ватт, а в бытовой электросети 220 V такая сила тока будет в электроприборе мощностью 220 Вт (0,22 кВт). В промышленном оборудовании, питающемся от 380 Вольт, целых 657 Ватт.

Сколько ампер в сети 220 вольт?

Чаще всего, современные домашние розетки 220В рассчитаны на максимальный ток 10 или 16 Ампер. Некоторые производители заявляют, что их розетки выдерживают и 25 Ампер, но таких моделей крайне мало.

Сколько в 1 ампер вольт?

Международный вольт — электрическое напряжение, которое в проводнике, имеющем сопротивление в один ом, производит ток силою в 1 ампер.

Что убивает человека напряжение или сила тока?

Бьют не вольты, бьют амперы. Если человека ударило током, то он может пострадать от большой силы тока и от малого напряжения. И если было большое напряжение и большое сопротивление, то сила тока будет маленькой, а значит и меньше последствий.

Что такое переменный ток и чем он отличается от постоянного?

Переменный ток, в отличие от тока постоянного, непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени. … Такие источники называются генераторами переменного тока.

Что лучше постоянный или переменный ток?

Какой электрический ток лучше: постоянный или переменный ток? … И в первую очередь это связано с тем, что переменный ток проще преобразовывать из более низкого напряжения в более высокое и наоборот, то есть он проще в трансформации.

Где используется постоянный и переменный ток?

Метро, троллейбусы, теплоходы и электрички традиционно приводятся в движение двигателями, питаемыми постоянным током. … Переменное напряжение выпрямляется на тяговой подстанции, после чего подается на контактную сеть, — так получают постоянный ток для общественного электротранспорта.

Какой ток в аккумуляторе автомобиля?

Аккумуляторные батареи для автомобилей имеют от 40 до 225 Ач. Но наиболее популярный диапазон, это 55 – 60 Ач. Проще говоря, на протяжении 60 минут, АКБ может отдавать силу тока в 55 Ампер, после чего полностью разрядится.

Откуда в розетке 220 вольт?

Чтобы как-то снизить нагрузку нужно было или утолщать провода в кабельных линиях или увеличить напряжение (I=U/R). Выбрали меньшее из зол и увеличили напряжение в сети до тех же 220 вольт только на каждую фазу.

Различия токов

Конечно же, главным различием переменного и постоянного тока является возможность переправки DC на большое расстояние. При этом, если таким же путем переправить постоянный ток, его просто не останется. По причине разности потенциалов он израсходуется. Так же стоит отметить то, что преобразовать в переменный очень сложно, в то время как в обратном порядке подобное действие вполне легко выполнимо.

Намного экономичнее преобразование электричества в механическую энергию именно при помощи двигателей, работающих от АС, хотя и имеются области, в которых возможно применение механизмов только прямого тока.

Ну и последнее по очереди, но не по смыслу — все-таки переменный ток безопаснее для людей. Именно по этой причине все приборы, используемые в быту и работающие от DC, являются слаботочными. А вот совсем отказаться от применения более опасного в пользу другого никак не получится именно по указанным выше причинам.

Все изложенное приводит к обобщенному ответу на вопрос, чем отличается переменный ток от постоянного — это характеристики, которые и влияют на выбор того или иного источника питания в определенной сфере.

Передача тока на большие расстояния

У некоторых людей возникает вопрос, на который выше был дан поверхностный ответ: почему по линиям электропередач (ЛЭП) приходит очень высокое напряжение? Если не знать всех тонкостей электротехники, то можно согласиться с этим вопросом. Действительно, ведь если бы по ЛЭП приходило напряжение в 380 В, то не пришлось бы устанавливать дорогостоящие трансформаторные подстанции. Да и на их обслуживание тратиться не пришлось бы, разве не так? Оказывается, что нет.

Построение графика переменного тока

Дело в том, что сечение проводника, по которому протекает электричество, зависит только от силы тока и от его потребляемой мощности и совершенно в стороне от этого остается напряжение. А это значит, что при силе тока в 2 А и напряжении в 25 000 В можно использовать тот же провод, как и для 220 В с теми же 2 А. Так что же из этого следует?

Здесь необходимо вернуться к закону обратной пропорциональности — при трансформации тока, т.е. увеличении напряжения, уменьшается сила тока и наоборот. Таким образом, высоковольтный ток отправляется к трансформаторной подстанции по более тонким проводам, что обеспечивает и меньшие потери при передаче.

Особенности передачи

Как раз в потерях и состоит ответ на вопрос, почему невозможно передать постоянный ток на большие расстояния. Если рассмотреть DC под этим углом, то именно по этой причине через небольшой отрезок расстояния электроэнергии в проводнике не останется. Но главное здесь не энергопотери, а их непосредственная причина, которая заключается, опять же, в одной из характеристик AC и DC.

Дело в том, что частота переменного тока в электрических сетях общего пользования в России — 50 Гц (герц). Это означает амплитуду колебания заряда между положительным и отрицательным, равную 50 изменений в секунду. Говоря простым языком, каждую 1/50 с. заряд меняет свою полярность, в этом и заключается отличие постоянного тока — в нем колебания практически либо совершенно отсутствуют. Именно по этой причине DC расходуется сам по себе, протекая через длинный проводник. Кстати, частота колебаний, к примеру, в США отличается от российской и составляет 60 Гц.

График разности постоянного и переменного тока

Генерирование

Очень интересен вопрос и о том, как же генерируется постоянный и переменный ток. Конечно, вырабатывать можно как один, так и другой, но здесь встает проблема размеров и затрат. Дело в том, что если для примера взять обычный автомобиль, ведь куда проще было бы поставить на него генератор постоянного тока, исключив из схемы диодный мост. Но тут появляется загвоздка.

Если убрать из автомобильного генератора выпрямитель, вроде бы должен уменьшиться и объем, но этого не произойдет. А причина тому — габариты генератора постоянного тока. К тому же и стоимость при этом существенно увеличится, потому и применяются переменные генераторы.

Вот и получается, что генерировать DC намного менее выгодно, чем АС, и тому есть конкретное доказательство.

Два великих изобретателя в свое время начали так называемую «войну токов», которая закончилась только лишь в 2007 году. А противниками в ней были Никола Тесла совместно с Джорджем Вестингаузом, ярые сторонники переменного напряжения, и Томас Эдисон, который стоял за применение повсеместно постоянного тока. Так вот, в 2007 году город Нью-Йорк полностью перешел на сторону Теслы, ознаменовав тем самым его победу. На этом стоит немного подробнее остановиться.

Виды тока

Существует два вида тока — постоянный и переменный. Чтобы понять разницу и определить, постоянный или переменный ток находится розетке, следует вникнуть в некоторые технические особенности. Переменный ток имеет свойство изменяться по направлению и величине. Постоянный же ток обладает устойчивыми качествами и направлением передвижения заряженных частиц.

Переменный ток выходит из генераторов электростанции с напряжением, составляющим 220–440 тысяч вольт. При подходе к многоквартирному зданию ток уменьшается до 12 тысяч вольт, а на трансформаторной станции преобразуется в 380 вольт. Напряжение между фазами именуют линейным. Низковольтный участок понижающей подстанции выдает три фазы и нулевой (нейтральный) провод. Подключение энергопотребителей осуществляется от одной из фаз и нулевого провода. Таким образом, в здание заходит переменный однофазный ток с напряжением 220 вольт.

Схема распределения электроэнергии между домами представлена ниже:

В жилище электричество поступает на счетчик, а далее — через автоматы на коробки каждого помещения. В коробках имеется разводка по комнате на пару цепей — розеточную и осветительной техники. Автоматы могут предусматриваться по одному для каждого помещения или по одному для каждой цепи. С учетом того, на сколько ампер рассчитана розетка, она может быть включена в группу или быть подключенной к выделенному автомату.

Переменный ток составляется примерно 90% всей потребляемой электроэнергии. Столь высокий удельный вес вызван особенностями этого вида тока — его можно транспортировать на значительные расстояния, изменяя на подстанциях напряжение до нужных параметров.

Источниками постоянного тока чаще всего являются аккумуляторные батареи, гальванические элементы, солнечные панели, термопары. Постоянный ток широко используется в локальных сетях автомобильного и воздушного транспорта, в компьютерных электросхемах, автоматических системах, радио- и телевизионной аппаратуре. Постоянный ток применяется в контактных сетях железнодорожного транспорта, а также на корабельных установках.

Обратите внимание! Постоянный ток используется во всех электронных приборах. На схеме, представленной ниже, показаны принципиальные отличия между постоянным и переменным токами. На схеме, представленной ниже, показаны принципиальные отличия между постоянным и переменным токами

На схеме, представленной ниже, показаны принципиальные отличия между постоянным и переменным токами.

Классификация

Постоянный и переменный ток

Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический ”ток проводимости”. Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют ”конвекционным”.

Токи различают на постоянный и переменный. Также существуют всевозможные разновидности переменного тока. При определении видов тока слово «электрический» опускают.

  • Постоянный ток — ток, направление и величина которого не меняются во времени. Может быть пульсирующий, например выпрямленный переменный, который является однонаправленным.
  • Переменный ток — электрический ток, изменяющийся во времени. Под переменным током понимают любой ток, не являющийся постоянным.
  • Периодический ток — электрический ток, мгновенные значения которого повторяются через равные интервалы времени в неизменной последовательности.
  • Синусоидальный ток — периодический электрический ток, являющийся синусоидальной функцией времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. Любой периодический несинусоидальный ток может быть представлен в виде комбинации синусоидальных гармонических составляющих (гармоник), имеющих соответствующие амплитуды, часто́ты и начальные фазы. В этом случае Электростатический потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.
  • Квазистационарный ток — относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов. Этими законами являются закон Ома, правила Кирхгофа и другие. Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры. Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.
  • Ток высокой частоты — переменный ток, (начиная с частоты приблизительно в десятки кГц), для которого становятся значимыми такие явления, которые являются либо полезными, определяющими его применение, либо вредными, против которых принимаются необходимые меры, как излучение электромагнитных волн и скин-эффект. Кроме того, если длина волны излучения переменного тока становится сравнимой с размерами элементов электрической цепи, то нарушается условие квазистационарности, что требует особых подходов к расчёту и проектированию таких цепей.
  • Пульсирующий ток — это периодический электрический ток, среднее значение которого за период отлично от нуля.
  • Однонаправленный ток — это электрический ток, не изменяющий своего направления.

Вихревые токи

Вихревые токи Фуко

Вихревые токи ( или токи Фуко) — замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитный поток, поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.

Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока. Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов. При очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий