Как сделать простой драйвер для светодиодов с питанием от 220 В своими руками

Простой преобразователь тока

Сборка миниатюрного преобразователя тока своими руками считается довольно простой. Такие стабилизаторы напряжения обычно изготавливаются в режиме для стабилизации тока. При этом не следует путать максимальное напряжение для всего блока и максимальную нагрузку на ШИМ-контроллер. На блок может быть установлена система низковольтных конденсаторов на 20 В, а импульсная микросхема может иметь вход до 35 В. Наиболее простой светодиодный стабилизатор тока, выполненный своими руками, — это вариант LM317. Потребуется только рассчитать резистор для светодиода с помощью онлайн калькулятора.

Для LM317 можно использовать подручное питание (к примеру, блок питания на 19 В от ноутбука, на 24 В или 32 В от принтера либо на 9 или на 12 вольт от бытовой электроники). К преимуществам такого преобразователя относят его низкую цену, минимальное количество деталей, высокую надежность, а также наличие в магазинах. Более сложную схему стабилизатора тока собирать своими руками не рационально. Поэтому если вы не являетесь опытным радиолюбителем, то импульсный стабилизатор тока намного проще и быстрее будет купить в готовом виде. При необходимости его можно доработать до требуемых параметров.

Чтобы выполнить сборку LM317, никаких особых знаний и навыков по электронике не потребуется (в схемах число внешних элементов минимально). Стоит такой простой стабилизатор тока очень дешево, при этом его возможности многократно проверены на практике.

Единственный недостаток заключается в том, что LM317 может потребовать дополнительного охлаждения. Также стоит опасаться китайских микросхем LM317 с более низкими параметрами. Стоимость в любом случае более чем доступна, при этом в цену включена доставка. Китайские производители выполняют довольно трудоемкую работу при цене изделия в 30-50 рублей за штуку. Ненужные запчасти можно распродать на Авито или форумах в интернете.

Сборка простого стабилизатора своими руками

Светодиод представляет собой полупроводниковый прибор, для работы которого необходим ток. Включение светодиодов через стабилизатор считается наиболее правильным. Продолжительность функционирования светодиода без потери яркости зависит от его режима работы. Главное достоинство простейших стабилизаторов (драйверов), таких как микросхема-стабилизатор LM317, — их довольно трудно спалить. Схема подключения LM317 требует всего двух деталей: самой микросхемы, включаемой в режим стабилизации, и резистора.

  1. Потребуется купить переменный резистор сопротивлением в 0.5 кОм (имеет три вывода и ручку регулировки). Заказать его можно через интернет или купить в «Радиолюбителе».
  2. Провода припаиваются к среднему выводу, а также к одному из крайних.
  3. С помощью мультиметра, включенного в режиме измерения сопротивления, замеряется сопротивление резистора. Нужно добиться максимального показания в 500 Ом (чтобы светодиод не перегорел при низком сопротивлении резистора). О том, как проверить мультиметром сам светодиод, написано здесь.
  4. После внимательной проверки правильности соединений перед подключением, собирается цепь.

Максимальная мощность LM317 — 1.5 Ампер. Если вы хотите увеличить ток, то в схему можно добавить полевой или обычный транзистор. В результате, для устройства на транзисторе на выходе можно добиться подачи 10 А (задается низкоомным сопротивлением). Для этих целей можно использовать транзистор КТ825 или установить аналог с лучшими техническими характеристиками и системой охлаждения.

В любом случае, ассортимент продаваемых модулей и блоков достаточно широкий, поэтому устройство с нужными параметрами можно собрать за минимальное время. КПД зависит от разницы напряжения входа и выхода, а также от режима работы.

Какую микросхему выбрать?

Если нет желания искать готовое устройство, можно сделать его самостоятельно. Причем произвести расчет под конкретные светодиоды. Микросхем для изготовления драйверов довольно много. Вам потребуется только умение читать электрические схемы и работать с паяльником. Для простейших устройств (мощностью до 3 Вт) можно использовать микросхему PT4115. Она дешевая, и достать очень просто. Характеристики элемента такие:

  1. Напряжение питания – 6-30 В.
  2. Выходной ток – 1,2 А.
  3. Допустимая погрешность при стабилизации тока – не более 5%.
  4. Защита от отключения нагрузки.
  5. Выводы для диммирования.
  6. КПД – 97%.

Обозначение выводов микросхемы:

  1. SW – подключение выходного коммутатора.
  2. GND – отрицательный вывод источников питания и сигнала.
  3. DIM – регулятор яркости.
  4. CSN – датчик входного тока.
  5. VIN – положительный вывод, соединяемый с источником питания.

Импульсные стабилизаторы тока

К более экономичным устройствам относятся стабилизаторы тока, основой которых является импульсный преобразователь. Данный элемент известен еще, как ключевой преобразователь или конвертер. Внутри преобразователя мощность прокачивается определенными порциями в виде импульсов, что и определило его название. В нормально работающем устройстве потребление мощности происходит непрерывно. Она непрерывно передается между входной и выходной цепями и также непрерывно поступает в нагрузку.

В электрических схемах стабилизатор тока и напряжения на основе импульсных преобразователей имеет практически одинаковый принцип действия. Единственным отличием является контроль над током через нагрузку, вместо напряжения на нагрузке. Если ток в нагрузке снижается, стабилизатор осуществляет подкачку мощности. В случае увеличения – выполняется снижение мощности. Это позволяет создавать стабилизаторы тока для мощных светодиодов.

В наиболее распространенных схемах дополнительно имеется реактивный элемент, называемый дросселем. От входной цепи на него определенными порциями поступает энергия, которая в дальнейшем передается на нагрузку. Такая передача происходит через коммутатор или ключ, находящийся в двух основных состояниях – выключенном и включенном. В первом случае ток не проходит, а мощность не выделяется.

Во втором случае ключ проводит ток, обладая при этом очень малым сопротивлением. Поэтому выделяемая мощность также близка нулю. Таким образом, передача энергии происходит практически без потерь мощности. Однако импульсный ток считается нестабильным и для его стабилизации используются специальные фильтры.

Наряду с явными преимуществами, импульсный преобразователь обладает серьезными недостатками, устранение которых требует специфических конструктивных и технических решений. Эти устройства отличаются сложностью конструкции, они создают электромагнитные и электрические помехи. Они затрачивают определенное количество энергии для собственной работы и в результате нагреваются. Их стоимость существенно выше, чем у линейных стабилизаторов и трансформаторных устройств.

Тем не менее, большинство недостатков успешно преодолеваются, поэтому импульсные стабилизаторы пользуются широкой популярностью у потребителей.

Стабилизатор на PT4115

PT4115 – унифицированная микросхема, разработанная компанией PowTech специально для построения драйверов для мощных светодиодов, которую можно использовать также и в автомобиле. Типовая схема включения PT4115 и формула расчета выходного тока приведены на рисунке ниже.

Понять, почему так происходит, а также ознакомиться с более детальным расчетом и выбором остальных элементов схемы можно здесь. Известность микросхема получила, благодаря своей многофункциональности и минимальному набору деталей в обвязке. Чтобы зажечь светодиод мощностью от 1 до 10 Вт, автолюбителю нужно всего лишь рассчитать резистор и выбрать индуктивность из стандартного перечня.

PT4115 имеет вход DIM, который значительно расширяет её возможности. В простейшем варианте, когда нужно просто зажечь светодиод на заданную яркость, он не используется. Но если необходимо регулировать яркость светодиода, то на вход DIM подают либо сигнал с выхода частотного преобразователя, либо напряжение с выхода потенциометра. Существуют варианты задания определенного потенциала на выводе DIM с помощью МОП-транзистора. В этом случае в момент подачи питания светодиод светится на полную яркость, а при запуске МОП-транзистора светодиод уменьшает яркость наполовину.

К недостаткам драйвера светодиодов для авто на базе PT4115 можно отнести сложность подбора токозадающего резистора Rs из-за его очень малого сопротивления. От точности его номинала напрямую зависит срок службы светодиода.

Обе рассмотренные микросхемы прекрасно зарекомендовали себя в конструировании драйверов для светодиодов в автомобиле своими руками. LM317 – давно известный проверенный линейный стабилизатор, в надежности которого нет сомнений. Драйвер на его основе подойдёт для организации подсветки салона и приборной панели, поворотов и прочих элементов светодиодного тюнинга в авто.

PT4115 – более новый интегральный стабилизатор с мощным MOSFET-транзистором на выходе, высоким КПД и возможностью диммирования.

Разновидности диммируемых драйверов

Типы диммируемых драйверов:

  1. Подключаются между БП и источником света. Они позволяют управлять энергией, которая поступает на LED-элементы. В основе конструкции находятся ШИМ-модуляторы с микроконтроллерным управлением. Вся энергия идет к светодиодам импульсами. От длины импульсов напрямую зависит энергия, которая поступит на светодиоды. Такие конструкции драйверов применяются в основном для работы модулей со стабилизированным питанием. Например, для лент или бегущих строк.
  2. Второй тип устройств позволяет проводить управление блоком питания. Управление производится при помощи ШИМ-модулятора. Также изменяется величина тока, который протекает через светодиоды. Как правило, такие конструкции применяются для питания тех устройств, которым необходим стабилизированный ток.

Нужно обязательно учесть тот факт, что ШИМ-регулирование плохо влияет на зрение. Лучше всего использовать схемы драйверов для питания светодиодов, в которых регулируется величина тока. Но вот один нюанс – в зависимости от величины тока свечение будет различным. При низком значении элементы будут излучать свет с желтым оттенком, при увеличении – с синеватым.

Стабилизаторы напряжения ключевого типа

Такого рода импульсный стабилизатор напряжения 12В коэффициент полезного действия имеет на уровне 60 %. Основной проблемой является то, что он не способен справляться с электромагнитными помехами. В данном случае приборы с мощностью более 10 Вт находятся в зоне риска. Современные модели данных стабилизаторов способны похвастаться предельным напряжением в 12 В. Нагрузка на резисторы при этом значительно ослабевает. Таким образом, на пути к конденсатору напряжение удается полностью преобразовать. Непосредственно генерация частоты тока происходит на выходе. Износ конденсатора в данном случае минимален.

Еще одна проблема связна с использованием простых конденсаторов. На деле они показали себя довольно плохо. Вся проблема заключается именно в высокочастотных выбросах, которые происходят в сети. Чтобы решить эту задачу, производители начали устанавливать на импульсный стабилизатор напряжения (12 вольт) конденсаторы электролитического типа. В результате качество работы удалось улучшить за счет увеличения емкости устройства.

Повышающий и понижающий стабилизаторы

Повышающий стабилизатор преобразует низкое входное напряжение в более высокое на выходе. Этот вариант применяется для светодиодов с блоком питания на малое количество вольт (к примеру, в автомобиле может потребоваться повысить 12 вольт для светодиодов до 19 В или 45 В). Понижающие стабилизаторы, наоборот, снижают высокое напряжение до нужного уровня. Все модули подразделяются на универсальные и специализированные. Универсальные обычно оборудуются двумя переменными сопротивлениями — для получения нужных параметров тока и напряжения на выходе. У специализированных устройств значения на выходе чаще всего фиксированы.

В качестве стабилизатора для светодиодов используется специальный стабилизатор тока, схемы которого можно в большом количестве найти в интернете. Популярной моделью здесь является Lm2596. Светодиоды часто подключаются к автомобильной сети или аккумулятору через резистор. При этом напряжение может колебаться импульсами до 30 вольт, из-за чего низкокачественные светодиоды могут выходить из строя (мигающие ходовые огни с частично неработающими светодиодами). Стабилизация тока в данном случае может осуществляться с помощью миниатюрного преобразователя.

Модифицированные модели устройств

Максимальный ток нагрузки у данного типа воспринимается до 4 А. Входное напряжение конденсатором способно обрабатываться до отметки не более 15 В. Параметр входного тока у них обычно не превышает 5 А. Пульсация в данном случае допускается минимальная с амплитудой в сети не более 50 мВ. Частоту при этом можно поддерживать на уровне 4 Гц. Все это в конечном счете благоприятно отразится на общем коэффициенте полезного действия.

Современные модели стабилизаторов вышеуказанного типа справляются с нагрузкой в районе 3 А. Еще одной отличительной чертой данной модификации можно назвать быстрый процесс преобразования. Во многом это связано с использованием мощных транзисторов, которые работают со сквозным током. В результате открывается возможность стабилизировать выходной сигнал. На выходе дополнительно задействуется диод коммутирующего типа. Устанавливается он в системе вблизи узла напряжения. Потери при нагревании значительно уменьшаются, и это является явным преимуществом стабилизаторов данного типа.

Обзор известных моделей

Большинство микросхем для питания светодиодов выполнены в виде импульсных преобразователей напряжения. Преобразователи, в которых роль накопителя электрической энергии выполняет катушка индуктивности (дроссель) называются бустерами. В бустерах преобразование напряжения происходит за счет явления самоиндукции. Одна из типичных схем бустера приведена на рисунке.

Схема стабилизатора тока работает следующим образом. Транзисторный ключ находящийся внутри микросхемы периодически замыкает дроссель на общий провод. В момент размыкания ключа в дросселе возникает ЭДС самоиндукции, которая выпрямляется диодом. Характерно то, что ЭДС самоиндукции может значительно превышать напряжение источника питания.

Как видно из схемы для изготовления бустера на TPS61160 производства фирмы Texas Instruments требуется совсем немного компонентов. Главными навесными деталями являются дроссель L1, диод Шоттки D1, выпрямляющий импульсное напряжение на выходе преобразователя, и Rset.

Резистор выполняет две функции. Во-первых, резистор ограничивает ток, протекающий через светодиоды, а во-вторых, резистор служит элементом обратной связи (своего рода датчиком). С него снимается измерительное напряжение, и внутренние схемы чипа стабилизируют ток, протекающий через LED, на заданном уровне. Изменяя номинал резистора можно изменять ток светодиодов.

Преобразователь на TPS61160 работает на частоте 1.2 МГц, максимальный выходной ток может составлять 1.2 А. С помощью микросхемы можно питать до десяти светодиодов включенных последовательно

Яркость светодиодов можно изменять путем подачи на вход «контроль яркости» сигнала ШИМ переменной скважности. КПД приведенной схемы составляет около 80%. Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания

В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке

Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания. В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке.

Как видно из структурной схемы, стабилизация тока светодиодов осуществляется Р-канальным полевым транзистором. Напряжение ошибки снимается с резистора Rsens и подается на схему управления полевиком. Так как полевой транзистор работает в линейном режиме, КПД подобных схем заметно ниже, чем у схем импульсных преобразователей.

Микросхемы линейки MAX16xxx часто применяются в автомобильных приложениях. Максимальное входное напряжение чипов составляет 40 В, выходной ток – 350 мА. Они, как и импульсные стабилизаторы, допускают ШИМ-диммирование.

Что такое драйверы для светодиодов и зачем они нужны

Светимость полупроводникового
лед-кристалла напрямую зависит от силы тока, проходящего через него.
Нестабильность этого параметра, характерная для бытовой сети 220 В, приводит к
быстрой деградации материала и выходу из строя светодиода. Поэтому и требуется
для него драйвер. В его задачу входит преобразование параметров электрического
тока в следующих направлениях:

  1. Стабилизация силы в точном значении выходных параметров.
  2. Задание амплитуды.
  3. Выпрямление из переменного в постоянный.

Особенности драйвера светодиодов на 220 В

Главная особенность
драйвера для светодиодов, питание которых осуществляется от 220 В, состоит в
том, что он изменяет напряжение и предназначен для работы с электрическим током
подобных характеристик. Поэтому для подключения лампочки не пригодны его
низковольтные аналоги – например, от фонарика или автомобиля на 12 вольт. Кроме
того, модели последнего типа могут включать в состав понижающий блок –
трансформатор.

При изготовлении
преобразователя своими руками следует знать его основные характеристики:

  1. Потребляемый ток. Должен совпадать со значением аналогичного параметра светодиодов, в противном случае они либо не будут выдавать полной яркости, заложенной производителем, либо перегорят.
  2. Мощность. Эта характеристика выражается в ваттах и равняется суммарной мощности всех led-узлов схемы.
  3. Напряжение на выходе. Находится в прямой зависимости от способа подключения и количества лед-элементов и падения напряжения на них – рассчитывается из суммарного их значения.

Расчет мощности при выборе ленты из последовательно соединенных светодиодов позволяет правильно подобрать драйвер для питания подсветки от 220 В. Итоговое значение равняется сумме данного параметра всех элементов плюс 25% (запас на возможную перегрузку). Например, в лед-полоске 20 элементов по 0,5 Вт каждый, общее значение составит 10W. Однако на практике лучше купить или изготовить своими руками прибор на 12-13 ватт.

Теория питания светодиодных ламп от 220В

Лэд-лампа, как правило,
представляет собой набор пространственно расположенных в определенной
композиции небольших, но достаточно мощных светодиодов (3,3 вольт и 1 ватт).
Чтобы изготовить своими руками замену стандартной лампочке накаливания в 70-80
Вт, потребуется дюжина недорогих лед-элементов. Однако бытовая сеть 220 В имеет
для них избыточные параметры.

Поэтому потребуется понизить
амплитуд и силу, а также трансформировать переменный электрический ток в
постоянный. Для этого понадобится драйвер, для изготовления своими руками
которого применяется делитель напряжения на емкостной или резисторной нагрузке,
а также стабилизаторы.

Схема ЛЕД драйвера на 220 вольт

Схема ЛЕД драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.

В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность.

Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но, если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.

  1. Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:
  2. делитель напряжения на ёмкостном сопротивлении;
  3. диодный мост;
  4. каскад стабилизации напряжения.

Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).

Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.

Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.

Третий каскад – сглаживающий стабилизирующий фильтр. Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.

Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.

Вариант драйвера без стабилизатора тока

В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.

Проблема любого безтрансформаторного драйвера – пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.

На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.

Диаграмма напряжения в схеме без стабилизатора

Диаграмма в схеме со стабилизатором

Поэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.

Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.

Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.

Зарубежные и российские аналоги

Чем можно заменить lm317 ? Полными аналогами микросхемы являются GL317, SG317, UPC317, ECG1900.  Очень известным отечественным аналогом lm317t c фиксированным напряжением является микросхема KP142ЕН12. Если нужен регулируемый линейный стабилизатор, то подойдет КРЕН12А (можно и Б).

Безопасность при эксплуатации

Максимальное напряжение между входом и выходом не должно превышать 40 В. Мощность рассеивания не более 20 Вт. Температура пайки не должна превышать 260 °С, при соблюдении расстоянии от корпуса микросхемы более 1,6 мм и времени нагревания до 10 секунд. Температура хранения устройства должна находится в пределах от -65 до + 150 °С, рабочая температура не более + 150 °С.

Это максимальные значения, которые могут привести к повреждению устройства или повлиять на стабильность его работы. Микросхема хорошо защищена от тепловой перегрузки и короткого замыкания контактов. Однако не стоит превышать допустимые параметры при эксплуатации, для избежания выхода её из строя и достижения максимально надежной работы.

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий