Что такое фаза, ноль, земля в электрике и зачем они нужны

Как окрашиваются провода фазы

При работе с проводкой наибольшую опасность представляют фазные провода. Прикосновение к фазе, при определенных обстоятельствах, может стать летальным, потому, наверное, для них выбраны яркие цвета. Вообще, цвета проводов в электрике позволяют быстрее определить которые из пучка проводов наиболее опасны и работать с ними очень аккуратно.

Расцветка фазных проводов

Чаще всего фазные проводники бывают красного или черного цвета, но встречается и другая окраска: коричневый, сиреневый, оранжевый, розовый, фиолетовый, белый, серый. Вот во все эти цвета может быть окрашены фазы. С ними проще будет разобраться, если исключить нулевой провод и землю.

На схемах фазные провода обозначаются латинской (английской) буквой L. При наличии нескольких фаз, к букве добавляют численное обозначение: L1, L2, L3 для трехфазной сети 380 В. В другой версии первая фаза обозначается буквой A, вторая —  B, третья — C.

Цвет провода заземления

По современным стандартам, проводник заземления имеет желто-зеленый цвет. Выглядит это обычно как желтая изоляция с одной или двумя продольными ярко-зелеными полосами. Но встречаются также окраска из поперечных желто-зеленых полос.

Такого цвета могут быть заземление

В некоторых случаях, в кабеле могут быть только желтые или ярко-зеленые проводники. В таком случае «земля» имеет именно такой цвет. Такими же цветами она отображается на схемах — чаще ярко-зеленым, но может быть и желтым. Подписывается на схемах или на аппаратуре «земля» латинскими (английскими) буквами PE. Так же маркируются и контакты, к которым «земляной» провод надо подключать.

Иногда профессионалы называют заземляющий провод «нулевой защитный», но не путайте. Это именно земляной, а защитный он потому, что снижает риск поражения током.

Какого цвета нулевой провод

Ноль или нейтраль имеет синий или голубой цвет, иногда — синий с белой полосой. Другие цвета в электрике для обозначения нуля не используются. Таким он будет в любом кабеле: трехжильном, пятижильном или с большим количеством проводников.

Какого цвета нулевой провод? Синий или голубой

Синим цветом обычно рисуют «ноль» на схемах, а подписывают латинской буквой N. Специалисты называют его рабочим нулем, так как он, в отличие от заземления, участвует в образовании цепи электропитания. При прочтении схемы его часто определяют как «минус», в то время как фаза считается «плюсом».

Как проверить правильность маркировки и расключения

Цвета проводов в электрике призваны ускорить идентификацию проводников, но полагаться только на цвета опасно — их могли подключить неправильно. Потому, перед началом работ, стоит удостовериться в том, правильно ли вы определили их принадлежность.

Берем мультиметр и/или индикаторную отвертку. С отверткой работать просто: при прикосновении к фазе загорается светодиод, вмонтированный в корпус. Так что определить фазные проводники будет легко. Если кабель двухжильный, проблем нет — второй проводник это ноль. Но если провод трехжильный, понадобиться мультиметр или тестер —  с их помощью определим какой из оставшихся двух фазный, какой — нулевой.

Определение фазного провода при помощи индикаторной отвертки

На приборе переключатель выставляем так, чтобы выбранной была шакала более 220 В. Затем берем два щупа, держим их за пластиковые ручки, аккуратно дотрагиваемся металлическим стержнем одного щупа к найденному фазному проводу, вторым — к предполагаемому нулю. На экране должно высветиться 220 В или текущее напряжение. По факту оно может быть значительно ниже — это наши реалии.

Если высветилось 220 В или чуть больше — это ноль, а другой провод — предположительно «земля». Если значение меньше, продолжаем проверку. Одним щупом снова прикасаемся к фазе, вторым — к предполагаемому заземлению. Если показания прибора ниже чем при первом измерении, перед вами «земля» и она должна быть зеленого цвета. Если показания оказались выше, значит где-то напутали при и перед вами «ноль». В такой ситуации есть два варианта: искать где именно неправильно подключили провода (предпочтительнее) или просто двигаться дальше, запомнив или отметив существующее положение.

И, в завершение, позвольте совет: при прокладке проводки и соединении проводов соединяйте всегда проводники одного цвета, не путайте их. Это может привести к плачевным результатам — в лучшем случае к выходу аппаратуры из строя, но могут быть травмы и пожары.

Определение ноля трансформатора

Определять нейтраль в промышленных трансформаторах нужно, если проводится их параллельное подключение друг к другу. Этот процесс называется фазировкой. Ее цель – установить совпадение по фазе преобразователя и сети или двух преобразователей. Суть фазировки – поиск выводов, между которыми напряжение нулевое.

Обмотки до 0,4 кВ проверяются вольтметром, для 10 кВ требуется указатель напряжения, от 10 кВ – измерительный трансформатор.

В городской квартире не нужно знать, как же определить ноль на трансформаторе, так как ток в сети переменный. На выводах местоположение фазы и ноля зависит от направления обмоток, поэтому меняется с изменением способа подключения. При необходимости определить ноль на работающем оборудовании нужно прикоснуться к выводам индикаторной отверткой. На выводе нулевого провода напряжения нет.

Если прибор показывает, что фазы нет, это не значит, что есть ноль. Необходимо проверить все возможные варианты.

Во многих регионах напряжение в электросети нестабильное. Многие владельцы частных домов устанавливают индивидуальные трансформаторы. Широко применяются так же мини-преобразователи, понижающие напряжение до 10-20 В. Они защищают от поражения током, экономят электроэнергию, продлевают срок эксплуатации бытовых приборов. При их подключении желательно знать, откуда берется нейтраль и как подключается к сети.

Определение мультиметром или тестером

Начнем с того, что определить фазу лучше всего с помощью отвертки, совмещенной с индикатором. Будем исходить из того, что если в хозяйстве есть мультиметр, индикатор найдется наверняка. В крайнем случае, можно сделать следующее. В некоторых случаях может помочь определение с помощью мультиметра напряжения между проводом и трубой отопления или водоснабжения. К сожалению, результат здесь не всегда предсказуем. Чаще всего, напряжение между фазой и системой отопления близко к 220 В, во всяком случае, оно должно быть выше, чем между тем же отоплением и нулем. Картина может измениться, например, если вороватый сосед использует трубы отопления как рабочее заземление.

В трехпроводных схемах мультиметр покажет рабочее напряжение между проводником, на который подана фаза и любым из двух других. Определение, какой ноль рабочий, а какой – земля, можно проводить по методике, изложенной выше, то есть, отсоединив на щитке один из приходящих нулей и воспользовавшись контрольной лампой.

Основные определения по теме Общее заземление

Защитное заземление — соединение проводящих частей оборудования с грунтом Земли через заземляющее устройство с целью защиты человека от поражения током.Заземляющее устройство — совокупность заземлителя (то есть проводника, соприкасающегося с землёй) и заземляющих проводников.Общий провод — проводник в системе, относительно которого отсчитываются потенциалы, например, общий провод БП и прибора.Сигнальное заземление — соединение с землёй общего провода цепей передачи сигнала.Сигнальная земля делится на цифровую землю и аналоговую. Сигнальную аналоговую землю иногда делят на землю аналоговых входов и землю аналоговых выходов.Силовая земля — общий провод в системе, соединённый с защитной землей, по которому протекает большой ток.Глухозаземлённая нейтраль — нейтраль трансформатора или генератора, присоединённая к заземлителю непосредственно или через малое сопротивление.Нулевой провод — провод, соединённый с глухозаземлённой нейтралью.Изолированная нейтраль — нейтраль трансформатора или генератора, не присоединённая к заземляющему устройству.Зануление — соединение оборудования с глухозаземлённой нейтралью трансформатора или генератора в сетях трёхфазного тока или с глухозаземлённым выводом источника однофазного тока.

Заземление АСУ ТП принято подразделять на:

  1. Защитноое заземление.
  2. Рабочеее заземление, или функциональное FE.

Чем грозит обрыв фазного или нулевого провода

С течением времени в розетках, переходных коробках, выключателях можно наблюдать обрыв провода. Это может произойти вследствие некачественного соединения, когда нагрузка была больше допустимой. Когда пропадает ноль или фаза в квартире, электротехнические устройства и приборы прекращают работу.


Определение фазы на участке квартиры

Эта же ситуация будет ставить в известность потребителя, если произойдет обрыв провода на одном из участков питания до вводного или распределительного щита, тогда не только одна, но и все квартиры, питающиеся от оборванной фазы, останутся без электричества, но другие потребители, питающиеся от других фаз, будут его получать. Когда обрывается ноль, обесточиваются все квартиры в доме.

Определение фазы и нуля в помещении

Домашним инструментом для определения фазы служит отвертка-индикатор, которая в своем устройстве имеет:

  • токопроводящий наконечник по форме отвертки, который вставляют в одно из отверстий розетки для нахождения фазы;
  • резистор ограничения тока;
  • светодиод или неоновую лампочку, назначение которых — показать, что при их горении это и есть фаза;
  • с другой стороны пробника металлический контакт для пальца руки, которым создается цепь для протекания безопасного тока.


Определение фазы тока

Когда в проверяемом контакте есть свечение светодиода, то это и есть фаза. Значит, второй контакт — ноль. Можно также для определения использовать тестер или другой измерительный прибор напряжения, когда выполнено подключение защитного провода. В этом случае между фазой и рабочим нулем будет показываться 220 В, а между защитой и нулем стрелка не будет отклоняться.

Поиск неисправностей

Работоспособность схемы питания квартиры изображена простым определением. Наличие фазы или рабочего нуля — не совсем правильный подход, так как кроме этого надо соблюсти еще ряд мероприятий — учесть положение включающих устройств, наличие в розетках потребителей с нагревательными элементами, но выключенных кнопкой на приборе.


Нахождение электричества

По этой причине поиск обрыва сети надо проводить при пустых розетках и выключенных устройствах включения (выключателях), кроме тех случаев, когда обрыв может находиться на линии от выключателя до светильника. Типовая схема разводки электропитания в квартире — это когда на розетки приходит фаза и рабочий ноль, а на осветительный прибор через выключатель — фаза. Ноль на светильник обычно подается напрямую от распределительной коробки, что представлено на фото ниже:

Фаза и ноль: их значение в сети питания

Электроэнергия подается к потребительским розеткам от подстанций, которые уменьшают поступающее напряжение до 380 В. Вторичная обмотка такого трансформатора имеет соединение «звезда» — три его контакта связываются между собой в точке «0», остальные три вывода идут к клеммам «А»/«В»/«С».

Соединенные в точке «0» провода подсоединяются к «земле». В этой же точке происходит деление проводника на «ноль» (обозначен синим цветом) и защитный «РЕ»-кабель (желто-зеленая линия).

Данная модель прокладки проводов пользуются во всех возводимых ныне домах. Она называется — система «TN-S». Согласно этой схеме к распределительному оборудованию дома подходят три кабеля фазы и два указанных нуля.

Все электропровода с подстанций подсоединяются к щитку, образуя систему из трех фаз. Далее уже происходит разделение по отдельным подъездам. В каждую из квартир подъезда подается напряжение лишь одной фазы — 220 В (провода «О»/«А») и защитный «РЕ»-кабель.

Вся возникающая нагрузка на систему электроснабжения при такой схеме распределяется в равномерном количестве, поскольку на каждом этаже дома выполняется разводка и подключение конкретных щитков к определенной электролинии напряжением в 220 В.

Схема подводимого напряжения представляет собой «звезду», которая в точности повторяет все векторные характеристики питающей подстанции. Когда в розетках нет никаких потребителей, то ток в данной цепи не протекает.

Цвет провода заземления

По современным стандартам, проводник заземления имеет желто-зеленый цвет. Выглядит это обычно как желтая изоляция с одной или двумя продольными ярко-зелеными полосами. Но встречаются также окраска из поперечных желто-зеленых полос.

Такого цвета могут быть заземление

В некоторых случаях, в кабеле могут быть только желтые или ярко-зеленые проводники. В таком случае «земля» имеет именно такой цвет. Такими же цветами она отображается на схемах — чаще ярко-зеленым, но может быть и желтым. Подписывается на схемах или на аппаратуре «земля» латинскими (английскими) буквами PE. Так же маркируются и контакты, к которым «земляной» провод надо подключать.

Иногда профессионалы называют заземляющий провод «нулевой защитный», но не путайте. Это именно земляной, а защитный он потому, что снижает риск поражения током.

2

Цветовое обозначение провода заземления

Согласно нормам использования электрического оборудования, все оно должно подключатся к сети, в которой имеется провод заземления. Именно при таком раскладе на технику будет распространяться гарантия производителя. Согласно ПУЭ защита заключается в желто-зеленую оболочку, причем цветовые полосы должны быть строго вертикальными. При другом расположении такая продукция считается нестандартной. Часто можно встретить в кабеле жилы с оболочкой ярко-желтого или зеленого окраса. В таком случае именно их используют в качестве заземления.

В некоторых странах допускается монтаж жилы заземления без оболочки, а вот если вам повстречался кабель зелено-желтого цвета с синей оплеткой и обозначением PEN, то перед вами заземление, совмещенное с нейтралью. Следует знать, что земля никогда не подключается к устройствам защитного отключения, расположенным в распределительном щитке. Провод заземления подключают к шине заземления, к корпусу либо металлической дверке распредщитка.

Рекомендуем: Высота установки розеток и выключателей от пола по евростандарту

На схемах можно увидеть различное обозначение заземления, поэтому чтобы избежать путаницы рекомендуем вам использовать нижеприведенную памятку:

Цветовая маркировка изоляции проводов

ФАЗА, НОЛЬ, ЗАЗЕМЛЕНИЕ

Давайте для начала разберемся что такое фаза и что такое ноль, а потом посмотрим как их найти.

В промышленных масштабах у нас производится трехфазный переменный ток. а в быту мы используем, как правило, однофазный. Это достигается за счет подключения нашей проводки к одному из трех фазовых проводов (рисунок 1), причем, какая именно фаза приходит в квартиру нам, для дальнейшего рассмотрения материала, глубоко безразлично. Поскольку этот пример очень схематичен, следует кратко рассмотреть физический смысл такого подключения (рисунок 2).

Электрический ток возникает при наличии замкнутой электрической цепи, которая состоит из обмотки (Lт) трансформатора подстанции (1), соединительной линии (2), электропроводки нашей квартиры (3). (Здесь обозначение фазы L, нуля — N).

Еще момент — чтобы по этой цепи протекал ток, в квартире должен быть включен хотя бы один потребитель электроэнергии Rн. В противном случае тока не будет, но НАПРЯЖЕНИЕ на фазе останется.

Один из концов обмотки Lт на подстанции заземлен, то есть имеет электрический контакт с грунтом (Змл). Тот провод, который идет от этой точки является нулевым, другой — фазовым.

Отсюда следует еще один очевидный практический вывод: напряжение между «нулем» и «землей» будет близко к нулевому значению (определяется сопротивлением заземления), а «земля» — «фаза», в нашем случае 220 Вольт.

Кроме того, если гипотетически ( На практике так делать нельзя! ) заземлить нулевой провод в квартире, отключив его от подстанции (рис.3), напряжение «фаза» — «ноль» у нас будет те же 220 Вольт.

Что такое фаза и ноль разобрались. Давайте поговорим про заземление. Физический смысл его, думаю уже ясен, поэтому предлагаю взглянуть на это с практической точки зрения.

При возникновении по каким- либо причинам электрического контакта между фазой и токопроводящим (металлическим, например) корпусом электроприбора, на последнем появляется напряжение.

В описанной выше ситуации защиту от поражения электрическим током может также обеспечить устройство защитного отключения.

При касании этого корпуса может возникнуть, протекающий через тело электрический ток. Это обусловлено наличием электрического контакта между телом и «землей» (рис.4). Чем меньше сопротивление этого контакта (влажный или металлический пол, непосредственный контакт строительной конструкции с естественными заземлителями (батареи отопления, металлические водопроводные трубы) тем большая опасность Вам грозит.

Решение подобной проблемы состоит в заземлении корпуса (рисунок 5), при этом опасный ток «уйдет» по цепи заземления.

Конструктивно реализация этого способа защиты от поражения электрическим током для квартир, офисных помещений состоит в прокладке отдельного заземляющего проводника РЕ (рис.6), который впоследствии заземляется тем или иным образом.

Как это делается — тема для отдельного разговора, поскольку существуют различные варианты со своими достоинствами, недостатками, но для дальнейшего понимания этого материала они не принципиальны, поскольку предлагаю рассмотреть нескольку сугубо практических вопросов.

Обрыв нуля, отгорание нуля – последствия!

Рейтинг:  5 / 510Обрыв нуля, отгорание нуля – последствия!

«Все, что нас не убивает, делает нас сильнее». Спорное утверждение.

Его точно нельзя отнести к электричеству, потому что воздействие тока на человеческий организм зависит от огромного количества факторов начиная с температуры тела и заканчивая наличием болезней.

Разумеется, никто не застрахован от попадания под напряжение. Зато легко можно уменьшить вероятность такого происшествия. В этой статье расскажем подробно про обрыв или отгорание нуля, последствия этого, и меры защиты.

Как известно, наибольшее распространение получили три схемы питания электроприемников: треугольник, звезда и звезда с нулем. Первые две применяются преимущественно там, где нагрузка распределена равномерно по трем фазам.

Совет

Например, по таким схемам соединяются обмотки электродвигателей или трансформаторов. В жилых и общественных зданиях использую схему соединения «звезда с нулем» – обычная звезда с нулевым проводом.

Чем обусловлено ее применение?

Дело в том, что в жилом и общественном секторе нагрузка однофазная: одна квартира (этаж или частный дом) питается от одной фазы, следующая – от второй, еще одна – от третьей, далее – по второму кругу. Так как в вводной щит подходит три фазы напряжения, количество квартир в доме или подъезде кратно трем.

Этим пытаются добиться равномерной загрузки трех фаз. Однако нельзя достичь того, чтобы все квартиры включали и выключали электроприборы в одно и то же время. Чтобы сохранить симметричной трехлучевую звезду напряжений (слева), применяют нулевой проводник.

Неравномерность электрических нагрузок в виде электрического тока буквально стекает в землю по нулевому проводу (ток  на рисунке).

Фото 1: графики эл. нагрузок в виде эл. тока

Сейчас квартиры и офисы наполнены бытовой электроникой – компьютерами, источниками бесперебойного питания, светодиодными лампами. Эти приборы создают токи большой частоты, которые тоже стекают в землю по нулевому проводу.

Токи нагревают место плохого контакта – а там наибольшее сопротивление. От нагрева сопротивление растет еще больше, это, в свою очередь, приводит в большему нагреву, в итоге нулевой провод может отгореть.

Рассмотрим этот вполне реальный случай; те же рассуждения будут при обрыве нулевого провода по каким-то другим причинам.

Фото 2: обгоревший нуль

Отгореть провод может в разных местах, которые можно свести к двум случаям:

1) обрыв общий: в трехфазном этажном щитке или вводном щите;

2) обрыв индивидуальный: в автомате, защищающем квартиру, или распределительной коробке, или розетке.

Во втором случае возможны два варианта: или в квартире/розетке просто пропадет напряжение, или напряжение 220-230 В будет даже там, где его совсем не ждут.

Может сложиться интересная картина: электроприборы работать не будут, и мультиметр покажет, что в розетке нет напряжения. На самом же деле напряжение будет и на фазе, и на нуле.

Напряжение с фазы на ноль может передаться через электрическую цепь какой-нибудь нагрузки, соединяющей фазу и ноль, будь то лампочка или зарядное устройство.

Обратите внимание

И если схема защитного заземления в квартире собрана неправильно, на корпусе микроволновки или стиральной машинки может появиться напряжение в 220 В. Опять же обычный автоматический выключатель этого не заметит. Защита техники от последствий обрыва достигается установкой в щитке реле контроля напряжения.

Фото 3: вольтметры

Перейдем от слов к цифрам. Обозначим напряжение в месте обрыва (или присоединения) нулевого провода как ,  – сопротивление фазы X или нулевого провода N. – ток в фазе X или нулевом проводе N. Все эти величины комплексные, т.е.

в расчетах надо учитывать сдвиг фаз в 120°.

Расчеты токов и напряжений в нормальном режиме (вместо  подставляем сопротивление нулевого провода) и при обрыве нуля ( ) проводят в таком порядке: ищут напряжение  в нулевой точке, вычисляют «искаженное» фазное напряжение  и ток в фазе .

В нормальном режиме ток в «нуле» равен суме комплексных фазных токов.

Социальные кнопки для Joomla

В чем отличие фазного проводника от нулевого?

Назначение фазного кабеля – подача электрической энергии к нужному месту. Если говорить о трехфазной электросети, то в ней на единственный нулевой провод (нейтральный) приходится три токоподающих. Это обусловлено тем, что поток электронов в цепи такого типа имеет фазовый сдвиг, равный 120 градусам, и наличия в ней одного нейтрального кабеля вполне достаточно. Разность потенциалов на фазном проводе составляет 220В, в то время как нулевой, как и заземляющий, не находится под напряжением. На паре фазных проводников значение напряжения составляет 380 В.

Линейные кабели предназначены для соединения нагрузочной фазы с генераторной. Назначение нейтрального провода (рабочего нуля) заключается в соединении нулей нагрузки и генератора. От генератора поток электронов перемещается к нагрузке по линейным проводникам, а его обратное движение происходит по нулевым кабелям.

Нулевой провод, как было сказано выше, не находится под напряжением. Этот проводник выполняет защитную функцию.

Назначение нулевого провода заключается в создании цепочки с низким показателем сопротивления, чтобы в случае короткого замыкания величины тока хватило для немедленного срабатывания устройства аварийного отключения.

Таким образом, за повреждением установки последует ее быстрое отключение от общей сети.

В современной проводке оболочка нейтрального проводника бывает синей или голубой. В старых схемах рабочий нулевой провод (нейтраль) совмещен с защитным. Такой кабель имеет покрытие желто-зеленого цвета.

В зависимости от назначения электропередающей линии она может иметь:

  • Глухозаземленный нейтральный кабель.
  • Изолированный нулевой провод.
  • Эффективно-заземленный ноль.

Первый тип линий все чаще используется при обустройстве современных жилых зданий.

Чтобы такая сеть функционировала правильно, энергия для нее вырабатывается трехфазными генераторами и доставляется также по трем фазным проводникам, находящимся под высоким напряжением. Рабочий ноль, являющийся по счету четвертым проводом, подается от этой же генераторной установки.

Наглядно про разницу между фазой и нолем на видео:

Вывод

Главная отличительная особенность «нуля» и «земли» в их назначении. «Нуль» совместно с фазой предназначен для питания электроприборов, а «земля» для защиты людей и животных от поражения электрическим током, если случится пробой. Рабочий «нуль» можно использовать в качестве «земли», если не нарушаются условия ПУЭ 1.7.83. Мы же рекомендуем класть проводку сразу с заземляющим проводником, что исключает необходимость использовать «ноль» не по назначению.

Проверьте свои знания в электрике:

  • Почему между фазой и нолем 220 В, а между фазами 380 В?
  • Почему в США напряжение в сетях 110 В, а в России 220 В?
Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий