Неисправности щеточного аппарата в двигателях с контактными кольцами.
Эти неисправности внешне в конечном счете приводят к искрению щеток, иногда происходит пробой изоляции между кольцами в процессе пуска двигателя, так как напряжение между кольцами в этот момент имеет максимальное значение. При эксплуатации щетки искрят чаще из-за ослабления щеточных пружин. Усилие, с которым пружина прижимает щетку к кольцу, можно определить динамометром. Ориентировочная величина усилия в килограммах должна соответствовать подсчитанной по формуле: F = 0,255 , где 0,25 — удельное давление на меднографитную щетку, кГ/см2; S — площадь щетки, см2. Повышенное давление на щетку также вызывает искрение, щетки перегреваются от повышенного трения. При замене сносившихся щеток новыми следует поставить щетки той же марки, в противном случае может появиться искрение. Новые щетки должны свободно двигаться в обойме щеткодержателя. Перед пуском двигателя щетки надо пришлифовать к кольцам. Контактные кольца должны быть цилиндрическими, без биения. При биении колец щетки перемещаются в обоймах щеткодержателей, если биения нет, щетки неподвижны. Искрение щеток может быть из-за слабого крепления колеи, из-за неровной контактной поверхности колец. В процессе работы двигателя щеточный аппарат загрязняется меднографитовой пылью, а иногда и смазкой от ближайшего подшипника. Все это обусловит появление искрения и перекрытия щеточного аппарата дугой.
Методика расчета дисбаланса напряжения
Расчеты, необходимые для определения дисбаланса напряжения, довольно просты. Результат выражается в процентах дисбаланса и может быть использован для определения следующих шагов в программах диагностики и ремонта двигателей. Расчет осуществляется в три этапа:
- Определение среднего значения напряжения или тока
- Вычисление наибольшего отклонения напряжения или тока
- Деление максимального отклонения на среднее значение напряжения или тока с последующим умножением на 100 % дисбаланс = (макс. отклонение от среднего напряжения или тока/среднее значение напряжения или тока) × 100
Расчет дисбаланса вручную позволяет определить мгновенное значение дисбаланса тока или напряжения. Анализатор работы электродвигателей, такой как Fluke 438-II, отображает дисбаланс напряжения и тока в режиме реального времени, а также любые изменения дисбаланса.
Аварийные перегрузки
Причиной аварийных перегрузок могут быть:
- аварии на питающей линии;
- резкое снижение напряжения;
- заклинивание рабочих узлов агрегата и т.д.
Выбор средства защиты в этих случаях зависит от режима работы асинхронного двигателя. Ниже мы перечислим основные типы аварийных режимов.
Длительный режим работы с постоянной нагрузкой. В этом случае перегрузки возникают при:
- поломках;
- нарушениях технологии эксплуатации;
- заклинивании или заедании узлов рабочего устройства.
При отсутствии этих факторов возможность перегрузки очень низка, так как, покупая электродвигатель, обычно выбирают модель с достаточным запасом мощности, и агрегат работает с недогрузкой (когда ток движка намного ниже номинального значения) большую часть времени.
С постоянной или слабо изменяющейся нагрузкой работают центробежные насосы, вентиляторы, шнековые и ленточные транспортеры и т.д. В этих устройствах нагрев двигателя практически не изменяется при кратковременных изменениях подачи материала. Если же механизм работает с нарушением нормальных условий длительное время, перегрузки могут оказать пагубное влияние на состояние обмоток.
Поломка деталей провоцируется прежде всего механическими перегрузками. Определить, при каких обстоятельствах электродвигатель окажется перегруженным, не представляется возможным, так как характер возникновения поломок такого рода случаен. Например, перегрузка может возникнуть при изменении физико-механических свойств транспортируемых материалов (размер частиц, влажность и т.п.) – когда вследствие этих изменений требуется большая мощность на их перемещение. Двигатель отключается защитой при перегрузках, которые могут вызвать опасный перегрев обмоток.
Главное требование к защите от перегрузок – ее срабатывание только при недопустимых значениях тока и определенной длительности его протекания. Ложные срабатывания (например, при пуске движка) должны быть исключены. Наряду с токовой защитой на агрегат устанавливается защита, действующая в функции температуры обмоток. Независимо от причины нагрева она отключает двигатель, когда температура обмоток достигает опасной величины.
По влиянию длительных превышений тока перегрузки подразделяются на небольшие и большие. Последствия первых проявляются постепенно, но по мере увеличения температуры процесс разрушения изоляции намного ускоряется. При перегреве на 10 градусов срок службы изоляции обмоток сокращается вдвое, но последствия можно обнаружить только после нескольких месяцев эксплуатации. Перегрузки второго типа разрушают изоляцию очень быстро.
Переменный длительный режим работы. Рабочие узлы машин для измельчения и дробления и других подобных устройств создают изменяющуюся в больших пределах нагрузку. При таком режиме перегрузки могут чередоваться с недогрузками и работой вхолостую. Если увеличение тока происходит часто, оно носит накопительный характер, что приводит к разрушению изоляции.
Колебания температуры обмотки практически незаметны, если частота нагрузки высокая, но их амплитуда гораздо больше при низкой частоте нагрузки (сотые доли герца).
Изменение нагрузки моментально влечет за собой изменение температуры обмоток. Из-за разницы теплофизических параметров отдельных частей устройства их нагрев неравномерен, и внутри механизма происходит переток тепла из одних узлов в другие. Температура обмоток статора может расти даже после отключения двигателя за счет тепла, передающегося от ротора. То есть, в этом случае степень нагрева изоляции зависит не только от величины тока, но и от тепловых свойств узлов машины.
Контролировать нагрев электродвигателя достаточно трудно из-за сложности процесса теплообмена, но более или менее точный результат можно получить путем измерения температуры обмотки (но и тут возможна некоторая погрешность).
Повторно-кратковременный режим работы. Он считается самым неблагоприятным для сохранности изоляции обмотки, поскольку кратковременная перегрузка электродвигателя происходит при каждом включении в работу. Защита часто не справляется со своей ролью, так как ее действие основано на измерении тока, а в переходных режимах температура и ток часто не соответствуют друг другу.
Влияние на электродвигатели токовых перегрузок – сложное явление, изучение которого требует основательного подхода и тщательных расчетов.
Обозначение TP
TP — аббревиатура «thermal protection» — тепловая защита. Существуют различные типы тепловой защиты, которые обозначаются кодом TP (TPxxx). Код включает в себя:
- Тип тепловой перегрузки, для которой была разработана тепловая защита (1-я цифра)
- Число уровней и тип действия (2-я цифра)
- Категорию встроенной тепловой защиты (3-я цифра)
В электродвигателях насосов, самыми распространёнными обозначениями TP являются:
TP 111: Защита от постепенной перегрузки
TP 211: Защита как от быстрой, так и от постепенной перегрузки.
Обозначение | Техническая егрузка и ее варианты (1-я цифра) | Количество уровней и функциональная область (2-я цифра) | Категория 1 (3-я цифра) |
ТР 111 | Только медленно (постоянная перегрузка) | 1 уровень при отключении | 1 |
ТР 112 | 2 | ||
ТР 121 | 2 уровня при аварийном сигнале и отключении | 1 | |
ТР 122 | 2 | ||
ТР 211 | Медленно и быстро (постоянная перегрузка, блокировка) | 1 уровень при отключении | 1 |
ТР 212 | 2 | ||
ТР 221 ТР 222 | 2 уровня при аварийном сигнале и отключении | 1 | |
2 | |||
ТР 311 ТР 321 | Только быстро (блокировка) | 1 уровень при отключении | 1 |
2 |
Изображение допустимого температурного уровня при воздействии на электродвигатель высокой температуры. Категория 2 допускает более высокие температуры, чем категория 1.
Все однофазные электродвигатели Grundfos оснащены защитой двигателя по току и температуре в соответствии с IEC 60034-11. Тип защиты двигателя TP 211 означает, что она реагирует как на постепенное, так и на быстрое повышение температуры.
Сброс данных в устройстве и возврат в начальное положение осуществляется автоматически. Трёхфазные электродвигатели Grundfos MG мощностью от 3.0 кВт стандартно оборудованы датчиком температуры PTC.
Эти электродвигатели были испытаны и одобрены как электродвигатели TP 211, которые реагируют и на медленное, и на быстрое повышение температуры. Другие электродвигатели, используемые для насосов Grundfos (MMG модели D и E, Siemens, и т.п.), могут быть классифицированы как TP 211, но, как правило, они имеют тип защиты TP 111.
Необходимо всегда учитывать данные, указанные на фирменной табличке. Информацию о типе защиты конкретного электродвигателя можно найти на фирменной табличке — маркировка с буквенным обозначением TP (тепловая защита) согласно IEC 60034-11. Как правило, внутренняя защита может быть организована при помощи двух типов устройств защиты: Устройств тепловой защиты или терморезисторов.
Обрыв одной фазы сети, питающей статор.
Если обрыв произошел во время работы двигателя и нагрузка его не превышает половины номинальной, двигатель продолжает работать с несколько большим потреблением энергии из сети, скорость его понижается незначительно. При больших нагрузках двигатель останавливается, обмотка выходит из строя, если нет надлежащей защиты. Двигатель после остановки не может быть запущен даже на холостом ходу, так как вместо вращающегося магнитного поля при трех фазах есть пульсирующее магнитное поле. Обрыв одной из фаз питающей сети чаще всего бывает вследствие перегорания одной из плавких вставок, защищающих двигатель. При подозрении на обрыв одной из фаз сети следует двигатель остановить и пустить его вновь на холостом ходу. Если фаза оборвана, двигатель гудит и не разворачивается. Найти отсутствующую фазу легче токоизмерительными клещами. Для определения такой фазы достаточно двигатель включить на короткое время и быстро измерить ток во всех фазах. В оборванной фазе тока не будет. Отсутствующие фазы можно проверить и контрольной лампой. Для этого питающие провода отсоединяют от двигателя и ставят под напряжение, трижды подключают один из концов лампы поочередно к каждому проводу, а другой — к корпусу двигателя. На поврежденном проводе лампа гореть не будет. Если трансформатор, питающий данную электроустановку, с изолированной нейтралью, лампу следует включить между линейными проводами первым и вторым, вторым и третьим, первым и третьим. Лампа будет гореть из трех включений только один раз на целых проводах. При проверках напряжение лампы должно соответствовать Рис. 114. Работа асинхронного электродвигателя по схеме открытого треугольника. Показания амперметра А2 в 1,73 раза больше показаний амперметров А1 и А3. напряжению сети: в первом случае фазному, во втором линейному.
Почему возникает дисбаланс напряжения?
Несбалансированность трехфазной системы может привести к снижению производительности или преждевременному выходу из строя трехфазных электродвигателей и других трехфазных потребителей из-за воздействия следующих факторов:
- Механические напряжения в электродвигателях, вызванные более низким по сравнению с номинальным крутящим моментом на выходе
- Повышенный ток в электродвигателях и в трехфазных выпрямителях
- Ток дисбаланса будет поступать в нейтральные провода трехфазных систем с соединением по схеме «звезда»
Дисбаланс напряжения на клеммах двигателя приводит к существенному дисбалансу тока, который может быть в 6–10 раз больше дисбаланса напряжения. Из-за несбалансированных токов возникают пульсации момента, повышенная вибрация и механические напряжения, увеличиваются потери, а также перегрев двигателя. Дисбаланс напряжения и тока также может привести к проблемам при техобслуживании, которые связаны с ослабленными соединениями и износом контактов.
Дисбаланс может возникнуть в любой точке распределительный системы. Все фазы, подключенные к щиту, должны быть равномерно нагружены. Если нагрузка на одной из фаз будет больше, чем на остальных, напряжение на этой фазе будет ниже. У трансформаторов и трехфазных двигателей, запитанных от такого щита, могут наблюдаться повышенный нагрев, нехарактерные звуки и шумы, чрезмерная вибрация и даже преждевременный выход из строя.
Как предотвратить поломку электродвигателя?
Четыре стратегии успеха
В критических процессах на всех производственных предприятиях используются системы управления электродвигателями. Выход оборудования из строя может привести к высоким финансовым потерям, выражающимся как в расходах на замену электродвигателя или его деталей, так и в потерях от простоя оборудования.
Вооружение инженеров-технологов и техников необходимыми знаниями, распределение приоритетов рабочей нагрузки и управление профилактическим обслуживанием для мониторинга оборудования и устранения случайно возникающих, практически неуловимых проблем поможет в некоторых случаях избежать поломок из-за нормальных рабочих нагрузок системы и сократить общие потери из-за простоев.
Существуют четыре основные стратегии, которые можно использовать для восстановления или предотвращения преждевременных повреждений электродвигателя:
- Документирование рабочего состояния, технических характеристик машины и допустимых диапазонов рабочих характеристик.
- Измерение и документирование критически важных параметров при установке двигателя, до и после его обслуживания и на регулярной основе.
- Создание архива измерений, облегчающего анализ тенденций и определение ступенчатых изменений состояния.
- Планирование индивидуальных измерений для определения базовых тенденций. Любые изменения более чем на 10-20% (или любое другое значение в процентах, определяемое на основе характеристик или критичности вашей системы) должны исследоваться для выяснения причины возникновения проблемы.
Если вам нужна профессиональная консультация по анализу качества электроэнергии, просто отправьте нам сообщение!
Примеры оборудования: Поделитесь этой страницей с друзьями и коллегами
Витковое и междуфазное замыкание в обмотке ротора двигателя с контактными кольцами.
При таком замыкании обмотка ротора перегревается, ток в фазах статора колеблется, обмотка статора нагревается больше обычного, при пуске и работе с сопротивлением роторной цепи обмотка ротора дымит. Если замкнутых витков много, ротор без нагрузки разворачивается даже при разомкнутых кольцах, а под нагрузкой двигатель долго разворачивается и сильно нагревается. При междуфазном замыкании в обмотке ротора двигатель разворачивается при разомкнутых кольцах чаще всего до половинной скорости, а по обмотке статора протекает колеблющийся ток, который может быть больше номинального значения.
Проверка переходного напряжения в электродвигателях
У переходного напряжения (временные нежелательные всплески или скачки напряжения в электрической цепи) может быть любое количество источников внутри или за пределами промышленного предприятия.
Включение и выключение расположенного рядом оборудования, блоки конденсаторов коррекции коэффициента мощности или даже погодные условия на отдаленных участках могут создавать переходное напряжение в распределительных системах. Переходные напряжения, которые отличаются по амплитуде и частоте, могут привести к разрушению или пробою изоляции в обмотках электродвигателя.
Поиск источника переходных процессов представляет собой сложную задачу, поскольку такие процессы происходят нерегулярно, а их признаки могут проявляться по-разному. Например, переходные процессы могут проявиться в управляющих кабелях и необязательно причинят вред непосредственно оборудованию, однако могут нарушить его работу.
Для обнаружения и измерения переходных напряжений можно использовать трехфазный анализатор качества электроэнергии с функцией измерения переходных процессов, такой как анализатор качества электроэнергии и работы электродвигателей Fluke 438-II. Функция измерения переходных процессов этого прибора имеет настройку напряжения, превышающую стандартное напряжение на 50 В. На дисплее измерительного прибора отображается потенциально проблемное напряжение, превышающее заданное на 50 В, т. е. переходное напряжение.
Если при первоначальном измерении переходные напряжения не обнаружены, рекомендуется измерять и регистрировать показатели качества электроэнергии с привязкой ко времени с помощью усовершенствованного промышленного регистратора качества электроэнергии. Примером такого прибора является трехфазный регистратор качества электроэнергии Fluke 1750.
Перегрузки технологического происхождения
Они обычно вызваны периодически происходящим увеличением момента на валу рабочего устройства (станка, установки), мощность двигателя которого постоянно изменяется. Броски тока провоцируются кратковременными большими моментами сопротивления (они возникают периодически). Так как обмотки двигателя имеют достаточно большую тепловую инерцию, перегрев возникает не сразу, а после неоднократных и длительных перегрузок. Поэтому защита должна включаться не при кратковременных нагрузках, а при опасном нагреве агрегата.
В машинах определенного типа возникают длительные, но сравнительно небольшие нагрузки. При этом происходит постепенный нагрев обмоток движка до близкой к предельно допустимому значению температуры. Поскольку электродвигатель подбирается с запасом по нагреву, такие незначительные превышения показателя тока даже продолжительного действия не приводят к возникновению опасной ситуации. Отключения механизма в этом случае не происходит, так как защита «определяет» перегрузку такого характера как неопасную.
Отклонение напряжения питающей сети от номинального значения.
Напряжение сельских электрических сетей колеблется в значительных пределах, официально узаконено отклонение напряжения на ±7,5% от номинального. Однако эти отклонения бывают значительно больше. При повышенном напряжении сети активная сталь машины равномерно перегревается даже при отсутствии нагрузки, двигатель потребляет из сети повышенный намагничивающий ток. При значительных повышениях напряжения изоляция обмотки статора разрушается вследствие перегрева ее от высокой температуры активной стали и большой величины намагничивающего тока. Эксплуатировать электродвигатели при повышенных напряжениях не рекомендуется. При пониженном напряжении сети активная сталь машины не перегревается, а обмотки перегреваются, так как двигатель потребляет повышенный ток при поминальной нагрузке. В случае понижения напряжения необходимо уменьшить нагрузку на двигатель, чтобы он потреблял из сети номинальный ток. При значительных уменьшениях напряжения затрудняется пуск двигателя — резко уменьшается его пусковой момент. При длительных понижениях напряжения сети его следует повысить перестановкой анцапф силового трансформатора. Понижение напряжения возможно также из-за недостаточного сечения линии электропередачи. В этом случае повысить напряжение можно, увеличив сечение линии или заменив марки проводов (например, вместо алюминиевых медные такого же сечения). При замене сечения или марки проводов следует учитывать механическую прочность опор линии электропередач, если новые провода тяжелее старых.