Что такое мощность переменного трехфазного переменного тока

Соединение в треугольник. Схема, определения

       Если конец каждой фазы обмотки генератора соединить с началом следующей фазы, образуется соединение в треугольник. К точкам соединений обмоток подключают три линейных провода, ведущие к нагрузке.
        На изображена трехфазная цепь, соединенная треугольником. Как видно
из рис. 6.3, в трехфазной цепи, соединенной треугольником, фазные и линейные напряжения одинаковы.

U

л = Uф

       IA, IB, IC – линейные токи;

       Iab, Ibc, Ica– фазные токи.

       Линейные и фазные токи нагрузки связаны между собой первым законом Кирхгофа для узлов а, b, с.

Рис. 6. 3

       Линейный ток равен геометрической разности соответствующих фазных токов.
    На рис. 7.4  изображена  векторная  диаграмма трехфазной цепи, соединенной треугольником при симметричной нагрузке. Нагрузка является симметричной, если сопротивления фаз одинаковы. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений, так как нагрузка состоит из активных сопротивлений.

Рис. 6.4

       Из векторной диаграммы видно, что

,

Iл = √3 Iф- при симметричной нагрузке.

     Трехфазные цепи, соединенные звездой, получили большее распространение, чем трехфазные цепи, соединенные треугольником. Это объясняется тем, что, во-первых, в цепи, соединенной звездой, можно получить два напряжения: линейное и фазное. Во-вторых, если фазы обмотки электрической машины, соединенной треугольником, находятся в неодинаковых условиях, в обмотке появляются дополнительные токи, нагружающие ее. Такие токи отсутствуют в фазах электрической машины, соединенных по схеме “звезда”. Поэтому на практике избегают соединять обмотки трехфазных электрических машин в треугольник.

Мощность при наличии сдвига фаз между током и напряжением

В условиях переменного электротока совпадения в токовом направлении и напряжении отмечаются только при отсутствии катушечной индукции и конденсаторов. В этом случае векторное направление тока и напряжения идентичны. Присутствие в схеме катушек и конденсатора сопровождается совпадением токовых фаз и показателей напряжения, но векторное вращение происходит на одинаковой скорости и при неизменных параметрах угла.

Фазовое смещение или сдвиг совпадает с углом, который наблюдается между векторными радиусами токовых показателей и параметров напряжения, а отставание в этих критериях провоцирует несовпадение.

Сдвиг фаз переменного тока и напряжения

При этом мощностные характеристики являются отрицательными за счет произведения положительной и отрицательной величин. В подобных условиях электрическая цепь внешнего типа становится стандартным источником электроэнергии. Незначительный объем энергии, поступающей в цепь на положительных показателях мощности, осуществляет возврат только при наличии отрицательных значений.

Продолжительность частей периода напрямую зависит от уровня фазового сдвига, при этом показатели смещения определяются длительностью отрицательных мощностей, или так называемыми средними мощностными характеристиками электрического тока.

Средняя мощность в активной нагрузке

Мощностные параметры электросети или любой установки являются наиболее важными данными практически любого электрического прибора. Передача проходящих или потребляемых мощностных характеристик активного типа осуществляются в течение определенного периода времени.

Табличные значения средних мощностных характеристик основных бытовых приборов

УстройствоПоказатели
Зарядное устройство2,0 Вт/час
Люминесцентные лампы «ДРЛ»50 Вт/час и более
Электрический чайник1,5 кВт/час
Акустические системы30 Вт/час
Стиральная машина2,5 кВт/час
Мойка под высоким давлением3,5 кВт/час
Инверторы полуавтоматического типа3,5 кВт/час
Кухонный блендер1,0-1,2 кВт/час
Микроволновая СВЧ-печь1,8 кВт/час
Кухонные тостеры1,2 кВт/час
Телевизор0,2 кВт
Холодильник0,4 кВт
Пылесос1,0 кВт
Компьютер стационарный0,55 кВт
Электрическая плита2,5 кВт/час
Фен для сушки волос1,0 кВт/час
Утюг1,0 кВт/час
Электрическая духовка1,2 кВт/час
Электрический обогреватель1,4 кВт/час

ⓘ Энциклопедия | Угловая частота — Вики ..

Исследование частотных характеристик дросселей в широком.

Local offer Физика длина скорость волна. check волновое число. гидродинамика гидромеханика длина волны период угловая частота фазовая скорость. 2.1. Спектры периодических сигналов. Кая круговая частота колебаний, δ – начальная фаза колебаний. кие колебания с циклической частотой ω. V, угловая скорость ω и радиус враще. Циклическая частота. Называют угловой круговой частотой, она отображает скорость изменения аргумента. Угловая частота измеряется в рад с. Значение фазы при. 0. t. Занятие 9. Цепи синусоидального тока. Отсюда видно, что при постоянной угловой частоте набег фазы за В этих выражениях ω t 2πf t мгновенная угловая частота колебания f t.

ГОСТ ИСО 10112 2002 Материалы.

Угловая частота круговая частота число колебаний, совершаемых за 2π секунд. Угловой частоты, где ν число колебаний в секунду, Т период. Угловая частота с видео 2. Где f частота, fc угловая частота спектра, ¯Ω значение Зависимость от угловой частоты ния угловой частоты модельного спектра Брюна.

Метод многоядерной МРТ Хабр Habr.

Ω, угловая частота, измеряется в радианах в секунду. Объяснения начинаем Размерность угловой частоты тоже радиан в секунду. Круговая частота. Циклическая частота Обучение Интернет. УГЛОВАЯ ЧАСТОТА. УГЛОВАЯ ЧАСТОТА круговая частота, число колебаний, совершаемое за 2p секунд. Угловая частота w 2pn 2p T, где n число.

Radian: перевод, произношение, транскрипция WooordHunt.

В системе СИ выражается в герцах Гц. Период и частота колебаний связаны соотношением: Циклическая или круговая частота ω 2πν. Она связана с. Слова на букву У Угловая минута секунда скорость мгновенная. Угловая частота, Существительное угловая частота угловые частоты, angular frequency. УГЛОВАЯ ЧАСТОТА Современная Энциклопедия Словари. Угловая частота, круговая частота, число полных колебаний, совершающихся при периодическом колебательном процессе за 2p единиц времени. Угловая частота гармонических колебаний вибрации. Вая скорость связана с длиной λ волны и частотой колеба циклическая частота колебаний λ π. 2 8. ω0 – угловая частота колебаний маятника. Калькулятор импеданса последовательной LC цепи. Угловая циклическая частота переменного тока. Скорость вращения радиуса вектора, т. е. изменение величины угла поворота в течение одной.

Угловая частота Мегаэнциклопедия Кирилла и Мефодия.

Угловая частота. фаза. мгновенное значение. ВЛЭП. Далее рассмотрим все эти. Cheb2ap Документация MATLAB. Круговая угловая частота связана с циклической частотой колебаний f: ώ 2 π f. Циклическая частота f связана с периодом колебаний Т соотношением:​. Угловая частота перевод с русского на английский. Radian frequency циклическая частота круговая частота угловая скорость radian length электрическая длина, равная одному радиану. Периодические синусоидальные сигналы. Ω0 собственная угловая частота недемпфированной системы, f являются: толщина виброизолятора bT, угловая частота вынуждающей силы f 200. Скачать ГОСТ 24346 80 Вибрация. Термины и определения. Совершать колебания при заданной угловой частоте, в то время как другая 5.5 Точность измерения величины угловой частоты должна составлять ±2.

Греческий алфавит и физические величины.

Эту величину называют частотой излучения ν. Поскольку для всех электромагнитных волн скорость в вакууме с одинакова, по частоте легко. 3.4. Угловая модуляция. Фаза и мгновенная частота колебания. Ν, Частота, нейтрино, кинематический коэффициент вязкости, ω, Угловая частота, мезон, вероятность состояния, ларморова частота прецессии,. УГЛОВАЯ ЧАСТОТА это Что такое УГЛОВАЯ ЧАСТОТА?. Где ω 0 ларморова угловая частота прецессии ядра,.

Различия токов

Конечно же, главным различием переменного и постоянного тока является возможность переправки DC на большое расстояние. При этом, если таким же путем переправить постоянный ток, его просто не останется. По причине разности потенциалов он израсходуется. Так же стоит отметить то, что преобразовать в переменный очень сложно, в то время как в обратном порядке подобное действие вполне легко выполнимо.

Намного экономичнее преобразование электричества в механическую энергию именно при помощи двигателей, работающих от АС, хотя и имеются области, в которых возможно применение механизмов только прямого тока.

Ну и последнее по очереди, но не по смыслу — все-таки переменный ток безопаснее для людей. Именно по этой причине все приборы, используемые в быту и работающие от DC, являются слаботочными. А вот совсем отказаться от применения более опасного в пользу другого никак не получится именно по указанным выше причинам.

Все изложенное приводит к обобщенному ответу на вопрос, чем отличается переменный ток от постоянного — это характеристики, которые и влияют на выбор того или иного источника питания в определенной сфере.

Передача тока на большие расстояния

У некоторых людей возникает вопрос, на который выше был дан поверхностный ответ: почему по линиям электропередач (ЛЭП) приходит очень высокое напряжение? Если не знать всех тонкостей электротехники, то можно согласиться с этим вопросом. Действительно, ведь если бы по ЛЭП приходило напряжение в 380 В, то не пришлось бы устанавливать дорогостоящие трансформаторные подстанции. Да и на их обслуживание тратиться не пришлось бы, разве не так? Оказывается, что нет.

Построение графика переменного тока

Дело в том, что сечение проводника, по которому протекает электричество, зависит только от силы тока и от его потребляемой мощности и совершенно в стороне от этого остается напряжение. А это значит, что при силе тока в 2 А и напряжении в 25 000 В можно использовать тот же провод, как и для 220 В с теми же 2 А. Так что же из этого следует?

Здесь необходимо вернуться к закону обратной пропорциональности — при трансформации тока, т.е. увеличении напряжения, уменьшается сила тока и наоборот. Таким образом, высоковольтный ток отправляется к трансформаторной подстанции по более тонким проводам, что обеспечивает и меньшие потери при передаче.

Особенности передачи

Как раз в потерях и состоит ответ на вопрос, почему невозможно передать постоянный ток на большие расстояния. Если рассмотреть DC под этим углом, то именно по этой причине через небольшой отрезок расстояния электроэнергии в проводнике не останется. Но главное здесь не энергопотери, а их непосредственная причина, которая заключается, опять же, в одной из характеристик AC и DC.

Дело в том, что частота переменного тока в электрических сетях общего пользования в России — 50 Гц (герц). Это означает амплитуду колебания заряда между положительным и отрицательным, равную 50 изменений в секунду. Говоря простым языком, каждую 1/50 с. заряд меняет свою полярность, в этом и заключается отличие постоянного тока — в нем колебания практически либо совершенно отсутствуют. Именно по этой причине DC расходуется сам по себе, протекая через длинный проводник. Кстати, частота колебаний, к примеру, в США отличается от российской и составляет 60 Гц.

График разности постоянного и переменного тока

Генерирование

Очень интересен вопрос и о том, как же генерируется постоянный и переменный ток. Конечно, вырабатывать можно как один, так и другой, но здесь встает проблема размеров и затрат. Дело в том, что если для примера взять обычный автомобиль, ведь куда проще было бы поставить на него генератор постоянного тока, исключив из схемы диодный мост. Но тут появляется загвоздка.

Если убрать из автомобильного генератора выпрямитель, вроде бы должен уменьшиться и объем, но этого не произойдет. А причина тому — габариты генератора постоянного тока. К тому же и стоимость при этом существенно увеличится, потому и применяются переменные генераторы.

Вот и получается, что генерировать DC намного менее выгодно, чем АС, и тому есть конкретное доказательство.

Два великих изобретателя в свое время начали так называемую «войну токов», которая закончилась только лишь в 2007 году. А противниками в ней были Никола Тесла совместно с Джорджем Вестингаузом, ярые сторонники переменного напряжения, и Томас Эдисон, который стоял за применение повсеместно постоянного тока. Так вот, в 2007 году город Нью-Йорк полностью перешел на сторону Теслы, ознаменовав тем самым его победу. На этом стоит немного подробнее остановиться.

В трехфазной цепи

Мощностные показатели переменного тока при равномерной трехфазной нагрузке определяются наличием равноценного тока, протекающего по проводникам фазы. В этом случае показатели силы тока в условиях использования нулевого проводника составляют «О». Формула для расчета мощности переменного тока в условиях трехфазной сети: Р = 3 × U φ × I × соs(φ).

Симметричная (равномерная) нагрузка фаз в трехпроводной цепи трехфазного тока

Протекание внутри фазных проводников различных по величине токов представляет собой несимметричную, или неравномерную нагрузку. При этом именно несимметричная нагрузка сопровождается протеканием тока по нулевым или нейтральным проводам, поэтому уровень мощностных показателей определяется в соответствии со стандартной и общеизвестной формулой:

Робщая = Uа × Iа × соs(φ1) + Ub × Ib × соs(φ2) + Uс × Iс × соs(φ3).

Трехфазная сеть

Давайте более подробно рассмотрим именно трехфазную сеть, как более предпочтительную для нас. Для начала приведем сравнительную характеристику однофазной и трехфазной сети. Выделим некоторые плюсы и минусы.

Когда используется трехфазная сеть есть вероятность что нагрузка распределиться неравномерно на каждую фазу. Если, к примеру, от первой фазы будет запитан электрический котел и мощный нагреватель, а от второй — телевизор и холодильник, то будет иметь место такое явления, как «перекос фаз» — несимметрия напряжений и токов, что может быть следствием выхода из строя некоторых потребителей тока. Для избежания подобной ситуации следует тщательнее планировать распределение нагрузки еще на начальном этапе проектирования сети.

Также трехфазной сети потребуется большее число проводов, кабелей и автоматических выключателей, пропускающих ток, так как мощность будет значительно выше, соответственно монтаж такой сети будет дороже.

Однофазная сеть по возможной потенциальной мощности уступает трехфазной. Так что если вы предполагаете использовать много мощных потребителей тока, то второй вариант будет соответственно лучше. Для примера, если в дом заходит двужильный (трехжильный если он с заземлением), с линии электропередач, кабель сечением 16 мм2, тогда общая мощность всех электропотребителей в доме не должна превышать 14кВт, как в примере, наведенном выше.

Но если же вы будете использовать то же сечение провода для трехфазной сети, но соответственно кабель будет 4-5 жильным, то уже тогда максимальная суммарная мощность будет равняться уже 42 кВт.

В чем измеряется

Согласно ГОСТ 13109 норма напряжения в электрической сети варьирует в диапазоне от 198В до 242В (то есть 220В плюс или минус 10 процентов). При частой поломке бытовой техники, ламп или их мигании потребуется измерение напряжения в электрической проводке. Подобная проверка делается мультиметром или вольтметром. Ночью, когда электроприборы используются по минимуму, полученные значения будут максимальными.

Мультиметром измеряется напряжение в трёхфазной сети так:

  1. Между рабочим 0 и каждой из фаз: А-N, В-N, С-N.
  2. Линейные напряжения: А-В, А-С, В-С.

Всего должно получиться шесть измерений. Иногда делается ещё один замер — между заземляющим и нулевым рабочим проводником: N-PE.

Виды мощностей

Мощностью называется измеряемая физическая величина, которая равна скорости изменения с преобразованием, передачей или потреблением системной энергии. Согласно более узкому понятию, это показатель, который равен отношению затраченного времени на работы к самому периоду, который тратится на работу. Обозначается в механике символом N. В электротехнической науке используется буква P. Нередко можно увидеть также символ W, от слова ватт.

Мощность переменного тока -это произведение силы тока с напряжением и косинусом сдвига фаз. При этом беспрепятственно можно посчитать только активную и реактивную разновидность. Узнать полное мощностное значение можно через векторную зависимость этих показателей и площади.


Основные мощностные разновидности

Активная мощность

Активной называется полезная сила, определяющая процесс прямого преобразования электроэнергии в необходимый вид силы. В каждом электроприборе преобразовывается она по-своему. К примеру, в лампочке получается свет с теплом, в утюге — тепло, а в электрическом двигателе — механическая энергия. Соответственно, показывает КПД устройства.


Активная разновидность

Реактивная мощность

Реактивной называется та, которая определяется при помощи электромагнитного поля. Образуется при работе электроприборов

Обратите внимание! Это вредная и паразитная мощностная характеристика, которая определяется тем, каков характер нагрузки. Для лампочки она равняется нулю, а для электродвигателя она может быть равна большим значением

Разница между величинами в том, что активно действующая мощностная характеристика показывает КПД устройств, а реактивная является передачей этого КПД. Разница также наблюдается в определении, символе, формуле и значимости.

Обратите внимание! Что касается значения, то вторая нужна лишь для того, чтобы управлять создавшимся напряжением от первой величины и преодолевать мощностные колебания. Обе измеряются в ваттах и имеют большое значение в электромагнитном излучении, механической форме генератора или акустической волне

Активно применяются в промышленности.


Реактивная разновидность

Полная мощность

Полная — это сумма активной с реактивной мощностью. Равна сетевому мощностному показателю. Это произведение напряжения с током в момент игнорирования фазы угла между ними. Вся рассеиваемая с поглощаемой и возвращаемой энергией — это полная энергия.

Это произведение напряжения и тока, единица измерения которого это ватт, перемноженный на ампер. При активности цепи, полная равняется активной. Если речь идет об индуктивной или емкостной схеме, то полная больше, чем активная.

Вам это будет интересно Опасность напряжения шага


Полная разновидность

Комплексная мощность

Это сумма всех мощностных показателей фаз источника электроэнергии. Это комплексный показатель, модуль которого равняется полному мощностному показателю электроцепи. Аргументом является фазовый сдвиг между электротоком с сетевым напряжением. Может быть выражена уравнением, где суммарный мощностный показатель, который генерируют источники электроэнергии, равен суммарному мощностному показателю, который потребляется в электроцепи.

Обратите внимание! Вычисляется посредством использования соответствующей формулы. Так, необходимо комплексное напряжение перемножить на комплексны ток или же удвоенное значение комплексного тока перемножить на импеданс

Также можно удвоенное значение комплексного напряжения поделить на удвоенное значение импеданса.


Комплексная разновидность

Расчет трехфазной цепи, соединенной звездой

       Трехфазную цепь,   соединенную звездой, удобнее всего рассчитать методом двух узлов.
       На рис. 7.5 изображена трехфазная цепь при соединении звездой. В общем случае сопротивления фаз нагрузки неодинаковы (ZA ≠ ZB ≠ ZC )

       Нейтральный провод имеет конечное сопротивление ZN .
       В схеме между нейтральными точками источника и нагрузки возникает узловое напряжение или напряжение смещения нейтрали.
       Это напряжение определяется по формуле (6.2).

Рис.6. 5

     (6.2)

       Фазные токи определяются по формулам (в соответствии с законом Ома для активной ветви):

     (6.3)

       Ток в нейтральном проводе

                 (6.4)

       Частные случаи.
    1. Симметричная нагрузка.   Сопротивления фаз нагрузки   одинаковы и равны некоторому активному сопротивлению ZA = ZB = ZC = R.
       Узловое напряжение

,

потому что трехфазная система ЭДС симметрична,     .

        Напряжения фаз нагрузки и генератора одинаковы:

     Фазные токи  одинаковы по  величине и совпадают по фазе со своими фазными напряжениями. Ток в нейтральном проводе отсутствует

       В трехфазной системе, соединенной звездой, при симметричной нагрузке нейтральный провод не нужен.

      На изображена векторная диаграмма трехфазной цепи для симметричной нагрузки.
       2. Нагрузка несимметричная,   RA< RB = RC, но сопротивление нейтрального провода равно нулю:  ZN = 0. Напряжение смещения нейтрали

рис. 6.6

       Фазные напряжения нагрузки и генератора одинаковы

       Фазные токи определяются по формулам

      Вектор тока в нейтральном проводе равен геометрической сумме векторов фазных токов.

       На  рис. 6.7  приведена  векторная  диаграмма    трехфазной    цепи,    соединенной    звездой,    с нейтральным    проводом,    имеющим     нулевое     сопротивление,    нагрузкой   которой      являются   неодинаковые   по    величине    активные  сопротивления.
                    Рис. 6.7
       3. Нагрузка несимметричная, RA< RB = RC, нейтральный провод отсутствует,

       В схеме появляется напряжение смещения нейтрали, вычисляемое по формуле:

      Система фазных напряжений генератора остается симметричной. Это объясняется тем, что источник трехфазных ЭДС имеет практически бесконечно большую мощность. Несимметрия нагрузки не влияет на систему напряжений генератора.
    Из-за напряжения  смещения нейтрали фазные  напряжения нагрузки становятся неодинаковыми.
      Фазные напряжения генератора и нагрузки отличаются друг от друга. При отсутствии нейтрального провода геометрическая сумма фазных токов равна нулю.

       На рис. 6.8 изображена векторная диаграмма трехфазной цепи с несимметричной нагрузкой и оборванным нейтральным проводом. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений нагрузки. Нейтральный провод с нулевым сопротивлением в схеме с несимметричной нагрузкой выравнивает несимметрию фазных напряжений нагрузки, т.е. с включением данного нейтрального провода фазные напряжения нагрузки становятся одинаковыми.
                Рис. 6.8

Вычисление мощности

Формула мощности электрического тока и принцип расчета будут отличаться при рассмотрении цепей постоянного и переменного токов. Постоянный ток используется в бортовой сети автомобилей, портативных устройствах, питающем напряжении троллейбусов. Переменный — применяется в электрической проводке зданий, мощных электродвигателях и генераторах.

При постоянном напряжении

Чтобы предположить значение тока, нужно знать мощность используемых потребителей электроэнергии. Расчет тока по мощности производится из этой величины по формуле:

I = P / U,

где I — сила тока, U — напряжение в сети, P — суммарная мощность, которую будут потреблять подключенные устройства.

Для примера можно посчитать ток питания электродвигателя троллейбуса 150 кВт. В троллейбусной сети используется постоянное напряжение 600 В. Соответственно, при вычислении тока через указанную формулу, получается значение, равное 250 ампер. Для таких больших значений в троллейбусной сети используются специальные провода.

Существует специальные таблицы, позволяющие по известному току сразу найти сечение медного или алюминиевого проводника. Это же значение можно вычислить в калькуляторе онлайн. Необходимо ввести используемый материал, ток или мощность потребителя — и сервис рассчитает оптимальное сечение. В стандартных проводках зданий используются сечения 1,5 квадратных миллиметра для сетей освещения и 2,5 кв. мм. для розеток.

Какое освещение Вы предпочитаете

ВстроенноеЛюстра

При переменном напряжении

Для питания электрических сетей домашних и офисных зданий используется переменное напряжение. Его применение обосновано несколькими причинами:

  1. Меньшие затраты при передаче по ЛЭП;
  2. Простое создание повышающих и понижающих напряжение устройств;
  3. Отсутствие полярности.

Мощность переменного тока сильно зависит от параметров питаемой нагрузки. Поэтому формула электрической мощности в переменных сетях приобретает вид:

P = U ⋅ I ⋅ cosφ,

где cosφ определяет характер нагрузки.

В таких цепях это активная мощность, то есть превращающаяся при работе в другие виды энергии: электромагнитную и тепловую.

Для активного сопротивления, то есть обычных резисторов, cosφ = 1. Чем больше реактивная составляющая в цепи, то есть больше элементов имеют емкостное или индуктивное сопротивление, тем меньше будет cosφ. Коэффициент cosφ для большинства электроприборов имеет значение 0,95, исключение составляют только сварочные аппараты и электродвигатели, имеющие высокую индуктивную нагрузку.

Существует и реактивная мощность. Она определяет энергию, подаваемую с источника питания в реактивные элементы, а затем возвращаемая этими элементами обратно. Формула мощности тока для реактивных цепей имеет вид:

P = U ⋅ I ⋅ sinφ.

Здесь sinφ характеризует вклад в полную мощность индуктивных и конденсаторных элементов. Измеряется реактивная мощность в таких единицах, как вар (вольт-ампер реактивный).

В промышленных электросетях распространены трехфазные системы. Их преимущества важны для индустрии:

  • Более экономная передача электричества на дальние расстояния;
  • Уменьшение затрат при создании электродвигателей 3-х фазной системы;
  • Равномерность механической нагрузки на электрогенератор.

Особенностью трехфазных систем электрического тока является то, что напряжение в этих системах используется повышенное, равное 380 В. При распределенной по трем ветвям нагрузке это приводит к уменьшению рабочего тока по отношению к однофазной системе, в которой рабочим напряжением принято 220 В. Формула для расчета мощности в трехфазной цепи будет иметь следующий вид:

P = 1,73 ⋅ I ⋅ U ⋅ cosφ.

Повышающий коэффициент 1,73 здесь связан с распределённой нагрузкой и меньшим влиянием реактивной составляющей в таких системах.

Рассчитать значение переменного тока, зная потребляемую мощность, легко по указанным формулам. Например, для однофазной сети:

I = P /(U ⋅ cosφ).

Как же осуществляется работа генератора

В генераторе трехфазного тока есть три отдельных якоря, располагающихся на статоре устройства. Они имеют смещение на 1200 между собой. В центре устройства вращается индуктор, общий для трех якорей. Переменная ЭДС одинаковой частоты индуцируется в каждой катушке. Однако, моменты прохождения этих электродвижущих сил через нуль в каждой из этих катушек оказываются сдвинуты на 1/3 периода, так как индуктор проходит возле каждой катушки на 1/3 времени позднее, чем предыдущей. Все обмотки являются самостоятельными генераторами тока и источниками электроэнергии. Если присоединить провода к концам каждой обмотки, то получаются три независимые цепи. В данном случае, чтобы передать всю электроэнергию потребуется шесть проводов. Однако при других соединениях обмоток между собой вполне можно обойтись 3-4 проводами, что дает большую экономию провода.

Измерение мощности и энергии

Измерение мощности.В цепях постоянного тока мощность можно измерить косвенным методом с по­мощью амперметра и вольтметра

Р = UI,

но более точный резуль­тат дает измерение мощности электродинамическим ваттметром, которым измеряется мощность независимо от рода тока. Внешний вид (а) и схема включения ваттметра (б) показаны на рис.16. Ваттметр имеет четыре зажима для подключения подвижной и неподвижной катушек в цепь. Неподвижная катушка включается в цепь последовательно и называется токовой катушкой, а под­вижная катушка вместе с добавочным

Рис.16.1. Однофазный ваттметр: а

—внешний вид; б —схема включения в электрическую цепь переменного тока.

сопротивлением гд — па­раллельно нагрузке и называется катушкой напряжения. Начало катушек отмечено звездочкой *I и *U,

конец токо­вой катушки 5 А, а конец обмотки напряжения —150V. Так как направление отклонения указательной стрелки ваттметра зависит от взаимного направления токов в катушках, то выводы *I и *U подключаются к источнику тока, а выводы 5 А и 150V—к на­грузке. Ввиду того что выводы *I и *U подключаются к одному и тому же проводу, их можно соединить между собой проводником, что и делается на практике при измерении мощности в цепи по­стоянного тока и активной мощности в цепи переменного тока.

Измерение энергии.Различают следующие способы контроля расхода электроэнергии: 1. Косвенный способ. В этом случае измеряют косвенные параметры, а расход электроэнергии определяют расчетом. Так например, расход электроэнергии в цепях постоянного тока определяется по формуле:

W = U I t(16.1),

где U — напряжение на приемнике электроэнергии I — ток в приемнике t— время прохождения тока.

Т.о. для измерения расхода электроэнергии параллельно приемнику нужно включить вольтметр и измерить напряжение U, последовательно приемнику включить амперметр и измерить силу тока I . Время — t измеряется с помощью хронометра. Сняв показания с вольтметра, амперметра и хронометра расход электроэнергии определяют по формуле (16.1). В цепях переменного тока расход электроэнергии определяется по формуле (16.2)

W = U I t cosφ(16.2)

Т.о. для косвенного измерения расхода электроэнергии в данном случае, кроме вольтметра, амперметра и хронометра нужно включить фазометр для измерения коэффициента мощности cosφ.

2. Непосредственный способ. Этот способ используется в цепях переменного тока. В этом случае для измерения расхода электроэнергии используется индукционный счетчик электрической энергии. Счетчик представляет собой суммирующий прибор. Основное отличие его от стрелочного прибора состоит в том, что угол поворота его подвижной части не ограничиваемый пружиной, нарастает и показания счетчика суммируются. Каждому обороту подвижной части счетчика соответствует определенное количество израсходованной энергии. Счетчик включается в Рис. 16.2 электрическую цепь также как ваттметр (рис. 16, 1), т.е. его токовая обмотка (3) включается последовательно с нагрузкой и контролирует силу тока в нагрузке, а обмотка напряжения (2) включается параллельно нагрузке и контролирует напряжение на нагрузке. Время контролируется за счет количества оборотов диска.

Подключение асинхронного двигателя

Трехфазный переменный ток

Электрическая сеть трехфазного переменного тока получила наиболее широкое распространение среди электрических систем передачи энергии. Главным по сравнению с однофазной и двухфазной системами является ее экономичность. В трехфазной цепи энергия передается по трем проводам, а токи текущие в разных проводах сдвинуты относительно друг друга по фазе на 120°, при этом синусоидальные ЭДС на разных фазах имеют одинаковую частоту и амплитуду.

Трехфазный ток (разница фаз 120°)

Звезда и треугольник

Трехфазная обмотка статора электродвигателя соединяется по схеме в зависимости от напряжения питания сети. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя (из двигателя выходит три провода), выведены наружу (выходит шесть проводов), выведены в распределительную коробку (в коробку выходит шесть проводов, из коробки три).

Фазное напряжение – разница потенциалов между началом и концом одной фазы

Другое определение для соединения “звезда”: фазное напряжение это разница потенциалов между линейным проводом и нейтралью (обратите внимание, что у схемы “треугольник” отсутствует нейтраль)

Линейное напряжение – разность потенциалов между двумя линейными проводами (между фазами).

ЗвездаТреугольникОбозначение
Uл, Uф – линейное и фазовое напряжение, В,
Iл, Iф – линейный и фазовый ток, А,
S – полная мощность, Вт
P – активная мощность, Вт

Внимание: Несмотря на то, что мощность для соединений в звезду и треугольник вычисляется по одной формуле, подключение одного и того же электродвигателя разным способом в одну и туже электрическую сеть приведет к потреблению разной мощности. При этом не правильное подключение электродвигателя, может привести к расплавлению обмоток статора.

Пример: Допустим электродвигатель был подключен по схеме “звезда” к трехфазной сети переменного тока Uл=380 В (соответственно Uф=220 В) и потреблял ток Iл=1 А

Полная потребляемая мощность:

S = 1,73∙380∙1 = 658 Вт.

Теперь изменим схему соединения на “треугольник”, линейное напряжение останется таким же Uл=380 В, а фазовое напряжение увеличится в корень из 3 раз Uф=Uл=380 В. Увеличение фазового напряжения приведет к увеличению фазового тока в корень из 3 раз. Таким образом линейный ток схемы “треугольник” будет в три раза больше линейного тока схемы “звезда”. А следовательно и потребляемая мощность будет в 3 раза больше:

S = 1,73∙380∙3 = 1975 Вт.

Таким образом, если двигатель рассчитан на подключение к трехфазной сети переменного тока по схеме “звезда”, подключение данного электродвигателя по схеме “треугольник” может привести к его поломке.

Если в нормальном режиме электродвигатель подключен по схеме “треугольник”, то для уменьшения пусковых токов на время пуска его можно соединить по схеме звезда. При этом вместе с пусковым током уменьшится также пусковой момент.

Подключение электродвигателя по схеме звезда и треугольник

Обозначение выводов статора трехфазного электродвигателя

Обозначение выводов обмоток статора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и выводаОбозначение вывода
НачалоКонец
Открытая схема (число выводов 6)
первая фазаU1U2
вторая фазаV1V2
третья фазаW1W2
Соединение в звезду (число выводов 3 или 4)
первая фазаU
вторая фазаV
третья фазаW
точка звезды (нулевая точка)N
Соединение в треугольник (число выводов 3)
первый выводU
второй выводV
третий выводW

Обозначение выводов обмоток статора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и выводаОбозначение вывода
НачалоКонец
Открытая схема (число выводов 6)
первая фазаC1C4
вторая фазаC2C5
третья фазаC3C6
Соединение звездой (число выводов 3 или 4)
первая фазаC1
вторая фазаC2
третья фазаC3
нулевая точка
Соединение треугольником (число выводов 3)
первый выводC1
второй выводC2
третий выводC3
Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий