Быстронасыщающиеся трансформаторы тока это

Разновидности

Есть много видов ТТ, но в наиболее общем виде выбор трансформаторов тока учитывает, что изделия подразделяются на измерительные (ТТИ) и для защиты.

Фактор разделенияВиды
Назначение
  • защита или контроль (измерение);
  • промежуточные — для замеров, выравнивания токов в АВДТ;
  • лабораторные.
КонструкцияВ обмоточных первичка включена последовательно в измеряемый проводник. В тороидальных вместо нее — линия сети (в отверстии ТТ), а в стержневых в ее роли — кабель цепи, что эквивалентно 1 витку.
Монтаж
  • для размещения снаружи (в ОРУ), или внутри (в ЗРУ);
  • встраиваемые (в ЭУ, измерителях, коммутационных агрегатах);
  • накладные;
  • для переноски (для лабораторий, тестирования).
Количество витков
  • с множеством витков (петлеобразные, восьмеркой);
  • одновитковые.
Изоляция
  • сухая: (фарфор, эпоксид, бэкелит);
  • промасленное покрытие;
  • компаунд.
СтупениОдна или больше (каскадные)
Под какой номиналДо 1 кВ и выше (например, для тока 10 кВ)

Токовый трансформатор может выполняться с возможностью открывать его, устанавливать и запирать, без отключения, в онлайн режиме.

Защитные ТТ

Трансформаторы защитные обычно релейного типа, «следят», чтобы проводящий манипуляции, влезающий в электросети электростанции, не получил смертельный удар. Внутри электросистем, создающих, транспортирующих, распределяющих энергию, для корректной работы присутствуют опасные значения. Но любое оборудование требует проверки, починки, обслуживания, поэтому оставляют «окно» безопасности в виде ТТ для специалистов-ремонтников.

Измерительные ТТ

Задача измерительного трансформатора тока ТТИ — преобразовывать величины, создавая возможность подсоединять вольтметр, амперметр, другой измеритель, не боясь, что он перегорит от чрезмерной нагрузки. При этом получают максимально точные, достоверные данные измерений. Другими словами, ТТ изолирует подключаемый девайс, не только для замеров, но и любой другой по потребности, от высоких мощностей.

ОБЛАСТЬ ИСПОЛЬЗОВАНИЯ И ОСОБЕННОСТИ ПОДКЛЮЧЕНИЯ

Трансформаторы тока используется для преобразования параметров электроэнергии первичных цепей высокого напряжения. Они выполняют две основные функции:

1. Приведение характеристик тока к величинам, которые могут использовать различные электроприборы: счетчики, измерительные устройства, защитные реле.

2. Физическая отделение (изоляция) исполнительных устройств, подключенных измерительным и защитным цепям, от высоковольтных кабелей линий электропередач.

ПОДКЛЮЧЕНИЕ СЧЕТЧИКА ЧЕРЕЗ ТРАНСФОРМАТОР ТОКА

Так как подсоединять измерительные устройства к первичной цепи питания прямым включением нельзя используются ТТ, с соответствующим коэффициентом трансформации. К примеру, для выполнения учета потребления электроэнергии на линии с нагрузкой в 400А необходимо использовать трансформатор тока с рабочими показателями не менее 400/5.

Подсоединение трансформаторов осуществляется на подстанции потребителя. Первичная катушка подключается к силовым контактам фаз (А и С) так называемая “схема неполной звезды”. К контактам вторичной обмотки подключается электросчетчик и амперметр. К примеру, модели САЗУ-ИТ и Э378 в щитовом исполнении.

ПОДКЛЮЧЕНИЕ ЧЕРЕЗ ТРАНСФОРМАТОРЫ ТОКА РЕЛЕЙНОЙ ЗАЩИТЫ

К примеру, необходимо установить релейную защиту на первичной (входящей) электроцепи с параметрами тока: напряжение 10 кВ и нагрузкой 1 кА. При таких показателях релейная защита не может быть включена в электроцепь напрямую напрямую.

Для подключения рекомендуется использовать трансформаторы тока модель ТПЛ-10 с коэффициентом трансформации 1000/5 при использовании токовых реле и ТТ – НТМИ-10с коэффициентом трансформации 1000/100 для подключения реле напряжения.

Также через этот тип трансформатора допускается подключение электросчетчика.

На отечественных предприятиях и бытовых подстанциях чаще всего встречаются проходные трансформаторы тока с двумя вторичными обмотками, которые используются для учета потребления электроэнергии и установки релейной защиты соответственно.

  *  *  *

2014-2022 г.г. Все права защищены.Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

Схемы токовых цепей

До этого мы рассматривали токовую цепь применительно к одной фазе. На практике это используется крайне редко, потому что даже если взять отдельно три однофазные токовые цепи, они не будут обладать теми свойствами, которыми обладают традиционные схемы типа “звезда”, “неполная звезда”, “треугольник” и прочие.

Существует множество схем токовых цепей. Каждая из них имеет свои свойства и применима только в определенных электроустановках.

Схема полной звезды

Распространенная схема: трансформаторы тока устанавливаются во всех фазах. В каждой фазе устанавливается защитное реле. А замыкается цепь через один общий провод, называемый “нулевым”.

Схема обладает следующими свойствами:

  • В нормальном режиме (при симметричной нагрузке) в схеме протекают токи Ia, Ib, Ic. По закону Кирхгофа, в нулевом проводе ток отсутствует, так как геометрическая сумма векторов фазных токов Ia+Ib+Ic равна нулю;
  • При глухом двухфазном замыкании (например, фаз B и C), наблюдается аналогичная предыдущему случаю картина: в фазе A ток Ia будет отсутствовать, в фазах B и C токи будут в противофазе: Ib = -Ic. Следовательно, их сумма так же будет равна нулю, и ток в нулевом проводе Io будет отсутствовать;
  • При однофазном замыкании появляется составляющая нулевой последовательности Io. Так как она не может быть скомпенсирована, ей деваться некуда – она замыкается (протекает) по нулевому проводу. Отсюда следует важный вывод: нулевой провод является фильтром нулевой последовательности;
  • Так как ток в защитном устройстве равен току в фазе, то коэффициент схемы равен KСХ = 1.

Подводя итог перечисленным свойствам, можно сделать вывод, что схема полной звезды реагирует на любые виды замыканий: при любых междуфазных замыканиях срабатывают защитные устройства в фазных проводах, а при однофазном замыкании – защитное устройство в нулевом проводе.

Схема неполной звезды

Более распространенная схема, чем предыдущая. Отличается от полной звезды отсутствием трансформатора тока цепи одной из фаз. Как правило, в фазе B.

Схема обладает свойствами:

  • В нормальном режиме при симметричной нагрузке ток в нулевом проводе равен геометрической сумме токов двух фаз, в которых установлены измерительные трансформаторы тока: Ia + Ic = -Ib;
  • При двухфазном замыкании между A-B или B-C в нулевом проводе появляется ток, равный -Iа или -Ic. При замыкании А-С в нулевом проводе протекает сумма токов Ia + Ic.
  • При однофазном замыкании фаз A или C, в нулевом проводе так же возникает ток нулевой последовательности поврежденной фазы. При повреждении в фазе B ток нулевой последовательности не возникает.
  • Коэффициент схемы равен KСХ = 1.

Недостатком этой схемы – реакция не на все виды однофазного короткого замыкания. Поэтому такие схемы применяются в сетях с большим сопротивлением при замыканиях на землю, т. е. в сетях 6 – 35 кВ.

Соединение трансформаторов тока в треугольник

Вторичные обмотки трансформаторов тока соединяются последовательно: начало ТТ фазы A – с концом ТТ фазы B, начало ТТ фазы B – с концом фазы C, начало ТТ фазы C – с концом ТТ фазы А. Обмотки защитного устройства подключают к выводам И1 фаз A, B и C и соединяются в звезду.

Рассмотрим, какими свойствами обладает рассматриваемая схема:

  • При симметричной нагрузке и трехфазном коротком замыкании через защитные реле протекает ток, равный разности токов двух фаз, а следовательно, в √3 раз больше фазного и сдвинут на 30°;
  • При двухфазных и однофазных замыканиях величина тока через защитное реле зависит от характера замыкания;
  • На однофазные замыкания на землю данная схема не реагирует;
  • Коэффициент схемы равен KСХ = √3.

Данная схема реагирует на все виды коротких замыканий, кроме замыканий на землю. Увеличивает чувствительность защиты за счет увеличения тока в реле до 2 крат.

Вид КЗПоврежденные фазыТоки в фазахТоки в реле
IIIIII
ДвухфазноеА, ВIb=-IaIc=02IaIb-Ia
В, CIc=-IbIa=0-Ib2Ib-Ic
C, AIa=-IcIb=0Ia-Ic2Ic
ОднофазноеАIa=IКЗIb и Iс = 0Ia-Ia
ВIb=IКЗIa и Iс = 0-IbIb
CIc=IКЗIa и Ib = 0-IcIc

Возможные неисправности

Указанные устройства чаще всего выходят из строя в результате повреждения изоляции, вызванного перегревом, непредусмотренным механическим воздействием или ошибкой при сборке.

Чтобы проверить состояние прибора, измеряют сопротивление межвитковой изоляции. Если она меньше установленного значения, оборудование нуждается в замене или ремонте.

Также для диагностики используются специальные приборы – тепловизоры, позволяющие проверить состояние всей действующей схемы. Наиболее сложные диагностические процедуры производятся в лабораторных условиях. Своевременная диагностика позволяет исключить аварийные ситуации и обеспечить нормальную работу устройств.

Принцип работы трансформаторов тока

1.3 Принцип работы Трансформатор тока состоит из замкнутого сердечника, набранного из тонких листов электротехнической стали, и двух обмоток — первичной и вторичной. Первичную обмотку включают последовательно в контролируемую цепь, ко вторичной обмотке присоединяют токовые катушки различных приборов и реле.

Рисунок 1 – Трансформатор тока: а — устройство, б, в — схемы включения амперметра непосредственно в контролирующую цепь и через трансформатор тока Устройство трансформатора тока и схемы включения амперметра показаны на рисунке 1, а—в. Магнитный поток в магнитопроводе 3 создается токами первичной 1 и вторичной 2 обмоток. Соотношение первичного I1 и вторичного I2 токов определяется формулой: KТТ = I1/I2 = w2/wl , где KТТ — коэффициент трансформации; w1 и w2 — число витков первичной и вторичной обмоток. Если в силовых трансформаторах и трансформаторах напряжения увеличение сопротивления во вторичной цепи вызывает уменьшение тока во вторичной и в первичной цепях, а напряжение на выводах обеих обмоток почти не изменяется, то у трансформаторов тока увеличение сопротивления во вторичной цепи приводит к повышению напряжения на выводах вторичной обмотки. Это объясняется тем, что ток в первичной цепи не зависит от нагрузки трансформатора тока. Ток во вторичной цепи трансформатора тока практически не меняется с изменением ее сопротивления при данном режиме первичной цепи. Вследствие этого нагрузка трансформатора тока увеличивается с возрастанием сопротивления во вторичной цепи, складывающегося из сопротивлений, подключенных к трансформатору тока аппаратов и приборов, соединительных проводов и переходных контактов. Трансформаторы тока для электроустановок напряжением до 1000 В показаны на рисунке 2, а, б, в (катушечный, шинный ТШ-0,5 и шинный с литой изоляцией ТШЛ-0,5). В шинных трансформаторах тока в качестве первичной обмотки используют шину, пропускаемую через окно 5 сердечника трансформатора тока, на который намотана вторичная обмотка. Проходные трансформаторы тока для внутренней установки на напряжение 10 кВ выполняют многовитковыми, одновитковыми и шинными с фарфоровой и пластмассовой (литой) изоляцией (Рисунок 3, а—в). Опорный трансформатор тока ТФНД-220 для наружной установки на напряжение 220 кВ (Рисунок 4) имеет обмотки, помещенные в фарфоровый корпус 3, залитый маслом и укрепленный на основании 4. На верхнем торце фарфорового корпуса укреплен чугунный расширитель 1 для масла с маслоуказателем и зажимами 2 первичной обмотки. Сердечник с вторичной обмоткой охватывается первичной обмоткой, имеющей в этом месте форму кольца. Выводы вторичной обмотки размещены в коробке 5 на основании трансформатора.

Рисунок 2 – Трансформаторы тока на напряжение до 1000 В: а — катушечный, б, в — шинные ТШ-0,5 и ТШЛ-0,5; 1 — каркас, 2, 4 — зажимы вторичной и первичной обмоток, 3 — защитный кожух, 5 — окно

Советуем изучить — Механические характеристики электроприводов

Рисунок 3 – Трансформаторы тока на напряжение 10 кВ с литой изоляцией: а — многовитковый ТПЛ-10, б — одновитковый ТПОЛ-10, в —шинный ТПШЛ-10; 1, 2 — зажимы первичной и вторичной обмоток, 3 — литая изоляция, 4 — установочный угольник, 5 — сердечник

Рисунок 4 – Опорный трансформатор тока ТФНД-220 наружной установки В высоковольтных распределительных устройствах подстанций применяют проходные (Рисунок 5, а) и опорные (Рисунок 5, б) трансформаторы тока.

Рисунок 5 – Трансформаторы тока: а — проходной ТПФМ-10 на 10 кВ, б — опорный ТФН-35М на 35 кВ; 1 и 3 — первичная и вторичная обмотки, 2 — фарфоровый изолятор, 4 — сердечник вторичной обмотки, 5 — контактный угольник, 6 — крышка, 7 — кожух, 8 — верхний фланец, 9 — зажимы выводов вторичной обмотки, 10 — якореобразный болт, 11 — крышка, 12 — фарфоровая покрышка, 13 — изоляционное масло, 14 — кольцевые обмотки («восьмеркой»), 15 — полухомут, 16 — масловыпускатель, 17 — цоколь, 18 — коробка вторичных выводов, 19 — кабельная муфта, 20 — маслоуказатель

Когда нужны трансформаторы тока?

Измерительные трансформаторы тока предназначены для замера характеристик, ограниченных номинальным напряжением. Последняя величина варьируется от 0.66 до 750 кВ. ТТ широко используются для различных целей:

  1. При отделении низковольтных учетных приборов и реле от первичного напряжения в сети, что обеспечивает безопасность электрослужбам во время ремонта и диагностики.
  2. Силами трансформаторов тока релейные защитные цепи получают питание. В случае короткого замыкания или проблем с режимами работы электроприборов ТТ обеспечивает корректную и оперативную активацию релейной защиты.
  3. Используются для учета электроэнергии с помощью счетчика.

На практике встречаются различные модели измерительных трансформаторов и в компактных электроприборах с малым корпусом, и в полноценных энергетических установках с огромными габаритами.

https://youtube.com/watch?v=FoZehRt5jEU

Классификация и расчет

Расчет и выбор трансформаторов тока следует начинать с изучения классификации представленных на рынке устройств. Все ТТ в первую очередь подразделяются на две категории в зависимости от целевого назначения:

  1. Для измерения показателя счетчика.
  2. Для защиты электрооборудования.

Эти же категории, в свою очередь, классифицируются на виды в зависимости от типа подключения:

  • предназначенные для работы на открытом воздухе;
  • функционирующие в закрытом помещении;
  • используемые в качестве встроенных элементов электрооборудования;
  • накладные, предназначенные для для проходного изолятора;
  • переносные, дают возможность осуществлять расчет в любом месте;

Все трансформаторы тока могут иметь различный коэффициент трансформации, который получают при изменений количества витков первичной или вторичной обмотки. Также эти устройства различаются по количеству ступеней работы на одноступенчатые и каскадные.

Если рассматривать конструктивные особенности, то ТТ могут иметь различную по типу изоляцию:

  • сухую, изготовленную из фарфора, бакелита или литой эпоксидной изоляции;
  • бумажно-масляную;
  • газонаполненную;
  • залитую компаундом;

Также исходя из характеристик конструкции, выделяют катушечные, одновитковые и многовитковые ТТ с литой изоляцией.

Как выбрать трансформатор тока наружной установки для счетчика электроэнергии?

Расчет и выбор трансформаторов тока для счетчика следует начинать с анализа базовых параметров номинального тока:

  • номинальное напряжение сети;
  • параметр номинального тока первичной и вторичной обмотки;
  • коэффициент трансформации;
  • класс точности;
  • особенности конструкции;

При выборе номинального напряжения устройства необходимо подбирать значение превышающие или идентичное максимальному рабочему напряжению. Если рассматривать вариант счетчика 0.4 кВ, то здесь потребуется измерительный трансформатор на 0.66 кВ.

Подключение счетчика через трансформаторы тока представлено на это фото

Значение номинального тока вторичной обмотки для того же счетчика, как правило, составляет 5 А. А вот с параметром для первичной обмотки нужно быть осторожнее. От этого значения зависит практически все подключение. Номинальный ток первичной обмотки формуется относительно коэффициента трансформации.

Последний следует выбирать по нагрузке с учетом работы в аварийных ситуациях. Согласно официальным правилам устройства электроустановок, допустимо подключение и использование трансформаторных устройств с завышенным коэффициентом трансформации.

Класс точности следует выбирать в зависимости от целевого назначения счетчика электричества. Коммерческий учет требует высокий класса точности — 0.5S, а технический учет потребления допускает параметр точности в 1S.

Говоря о конструкции ТТ, нужно учесть, что для счетчика с напряжением до 18 кВ используются однофазные или трехфазные ТТ. Для более высоких значений подойдут только однофазные конфигурации.

Как осуществляется подключение измерительного ТТ тока для счетчика?

Обозначение на схеме

Специалисты не рекомендуют осуществлять подключение счетчика с помощью трехфазного ТТ. Это обусловлено его несимметричной магнитной системой и увеличенной погрешностью. В этом случае оптимальным вариантом будет группа из 2 однофазных приборов, соединенных в неполный треугольник.

Подробнее изучить классификацию, базовые параметры и технические требования на подключение и расчет ТТ для счетчика электроэнергии можно в ГОСТ 7746-2001.

Назначение трансформаторов тока простыми словами

Основная задача

Трансформатор тока (сокращенное общепринятое обозначение ТТ) создан для работы в электрических схемах как простой преобразователь, способный с высокой точностью пропорционально понижать токи высоких величин до номинальных вторичных значений без изменения частоты сигнала.

На его вход подается первичный переменный ток большой величины, а по выходной цепочке протекает уменьшенное, преобразованное значение нагрузки.

Этот процесс легко представить совмещенными графиками синусоид обоих токов с их отображением на простой векторной диаграмме единичной окружности.

Синусоида первичного тока I1, проходящего по силовым шинам, показана графиком с высокой амплитудой, которая может превышать, например, 100 или 200 ампер. Допустим, что она отстоит от начала координат на какой-то угол α.

Ее форма и величина станет преобразовываться в ТТ во вторичную величину I2 со значительно меньшей амплитудой, например, 1 или 5 ампер.

Графики синусоидальных гармоник легко упрощаются векторными выражениями, построенными на плоскости единичной окружности. Они облегчают понимание происходящих процессов, позволяют проще их анализировать.

Векторная диаграмма просто рисуется и наглядно показывает пропорции величин каждой составляющей и их направление.

Сейчас же сделаем простой вывод: в любой момент времени ti синусоида I2 повторяет форму сигнала I1 и отличается от нее строго на определенную величину, называемую коэффициентом трансформации Ктт.

Его так и записывают на шильдике корпуса: выражением отношения первичного тока, показанного на первом месте, ко вторичному, например, 200/5.

В принципе здесь используется та же технология и маркировка, что у обычного трансформатора напряжения, где вместо ампер показываются вольты.

Практическое применение

Трансформаторы тока создаются в качестве измерительных приборов, обладающих определенными метрологическими характеристиками. Они работают в цепях измерения и схемах защитных устройств.

Их оценивают классами точности по двум параметрам:

  1. Отклонению реальной амплитуды вторичного тока от расчетного значения, вычисленного по коэффициенту трансформации.
  2. Смещению по времени угла вторичной синусоиды ẟ относительно первичного сигнала.

Для сведения: в результате трансформации ТТ частота вторичного сигнала не меняется, остается прежней. Погрешности образуются только по углу ẟ и амплитуде, но они не существенны для измерений, осуществляемых в бытовой электропроводке.

Далее разбираемся с конструкцией и принципами работы.

Тема: Разница между трансформаторами тока (с шиной и с отверстием)  (Прочитано 13873 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Страницы:

« предыдущая тема следующая тема »

Параллельное включение / трансформатор суммарного тока

Если измерение тока происходит через два трансформатора тока, то необходимо запрограммировать в трансформаторе тока общий коэффициент трансформации.

Пример: Оба трансформатора тока имеют коэффициент трансформации 1 000 / 5A. Измерение суммы происходит через трансформатор суммарного тока 5+5/5A.

В этом случае универсальный измерительный прибор должно быть настроено следующим образом:

Первичный ток: 1 000 A + 1 000 A = 2 000 A

Вторичный ток: 5 А

Заземление трансформаторов тока

Согласно VDE 0414 вторичная обмотка трансформаторов тока и напряжения, начиная со стандартного напряжения 3,6 кВ, должна быть заземлена. При низком напряжении можно обойтись без заземления, если на трансформаторе нет металлических поверхностей, с которыми возможно соприкосновение по большой площади. Обычно трансформаторы низкого напряжения заземляют. Как правило, для заземления используется S1. Возможно также заземление через S1(k)-клемму или через S2(k)-клеммы. Помните: заземление всегда выполняется с одной и той же стороны!

Использование защитных измерительных трансформаторов

При дооснащении измерительного прибора и исключительной доступности защитного сердечника рекомендуется использовать многовитковый катушечный трансформатор тока 5/5 для разделения защитного сердечника.

Трансформаторы тока разъемные в каталоге.

Как происходит процесс

При подаче нагрузки намагничивание прибора из-за включения рассматривается как негативное явление, способное спровоцировать БТН максимальной амплитуды. При отключении ток намагничивания сокращается до нулевой отметки, а магнитная индукция корректируется в зависимости от степени намагничивания стального сердечника, в результате чего в магнитопроводе сохраняется остаточная индукция.

Если через время повторить включение токопреобразующего устройства под напряжение, подчиненное синусоидальному закону изменения, магнитная индукция меняется со смещением остаточной величины до 90% от номинального значения. В результате возникает высокая амплитуда намагничивания и изменение формы кривой.

Главные параметры и характеристики

У каждого устройства есть рабочие показатели, включающие такие аспекты, как – максимальная нагрузка, погрешности, предел мощности и другие. Имеют свои индивидуальные характеристики и трансформаторы тока. К ним относятся:

Номинальный ток

Это предельная величина напряжения при которой, может работать устройство. Подразумевается допустимый номинал первичного тока, проходящего по первичной обмотке. Данный показатель указывается в паспорте, обязательно прилагающемся в базовой комплектации. Выделяют стандартный ряд, отображающийся, так же, в маркировке аппаратов.

Существует еще одно понятие – номинал вторичного тока. Зачастую от стандартный – двух величин 1А или 5А. Однако, некоторые производители предлагают выпуск устройств по индивидуальным характеристикам. Но и в этом случае, выбор будет не велик и ограничится двумя показателями 2А или 2.5А.

Коэффициент трансформации

Это соотношение, позволяющее определить, во сколько раз понижается подаваемое напряжение на первичную обмотку, проходящее через обе обмотки, в сравнении с выходящим. Определяется таким образом – показатель тока, поступающего на первичную обмотку, делится на величину, измеренную во вторичной, получают Кт. При этом, первичную обмотку необходимо закоротить – прервать передачу напряжения по цепи. Рассчитывается коэффициент на производстве. Серийный выпуск устройств производится по аналогии. Все показатели указываются в паспорте или в маркировке.

Токовая погрешность

Это процентное соотношение математической разности величин вторичного тока и первичного, к показателю приведенного тока ко вторичной цепи. Включает в себя два понятия – угловая и относительная погрешности. В соответствии с вышеупомянутым законом об электромагнитной индукции, направленные колебания или векторы образуют угол между первичными и вторичными потоками. Рассчитывает показатель по формуле и выражается в минутах.

Относительная погрешность – это математическая разница между величинами первичного и вторичного тока к реальной величине, приведенного тока ко вторичной цепи. Выделяют дополнительное понятие – относительно полной погрешности. Данный показатель подразумевает соотношение геометрической разности, тех же величин, только, в соответствии с мгновенным значением, т.е. замеренным в определенный интервал времени.

Номинальная предельная кратность

Показатель максимального значения кратности первичного тока, при условии, что полная погрешность на вторичной нагрузке не превысит 10%.

Максимальная кратность вторичного тока

Соотношение наибольшего показателя вторичного тока к его номинальной величине, при номинальном значении вторичной нагрузки. Данный показатель формируется насыщением самого магнитопровода, при условии, что дальнейшее возрастание не приводит к увеличению потока.

Один из важнейших показателей. Регламентирован и контролируется нормативной документацией. Согласно ГОСТу – рассчитывается для каждого типа устройств и должен строго соответствовать установленным нормам. Различают 9 основных классов точности для измерительных приборов и два для защитных. В стандарте предусмотрена таблица с точной нормировкой и условными обозначениями. От класса точности устройства будет зависеть, насколько точны будут показатели измерительных устройств.

Где приобрести трансформатор тока?

Как вы уже поняли из ранее прочитанного материала — трансформатор тока является очень востребованным прибором. Его широкое применение, прежде всего, объясняется качественными характеристиками, которые позволяют устройству выполнять различные электротехнические “задачи”.

Итак, трансформатор тока может понадобиться любому из нас. На случай, если это коснется и вас, то посоветую вам приобрести данный электромагнитный прибор (или его аналог) Там, как всегда, хороший и богатый выбор, а также выгодные цены на товары.

А вот вашему вниманию старое, но познавательное видео:

Чем отличается трансформатор тока от трансформатора напряжения и силового трансформатора

Существуют отличия в работе ТТ и ТН.

  • Первичный ток ТТ не зависит от вторичной нагрузки, что свойственно ТН. Это определяется тем фактом, что сопротивление вторичной обмотки ТТ на порядок меньше сопротивления первичной цепи и вообще, чем оно ближе к нулю, тем точнее аппарат. В трансформаторах напряжения и силовых трансформаторах же первичный ток зависит от величины тока вторичной нагрузки.
  • ТТ всегда работает с замкнутой вторичной обмоткой и величина его вторичного сопротивления нагрузки в процессе работы не изменяется.
  • Не допускается работа ТТ с разомкнутой вторичной обмоткой, для ТН и силовых при размыкании вторичной обмотки происходит переход в режим работы холостого хода.
Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий