Устройство и основные характеристики автоматических выключателей

Как устроен автоматический выключатель

Защищающее изобретение включает в себя: клеммы для подсоединения; подвижный силовой контракт; гибкий проводник; ручку для руководства; винт для регулировки теплового расцепления; отверстие для выхода газов; неподвижный контакт; электронный расцепитель.

Основным элементом данного прибора представляется электронный расцепитель. Он способствует автоматическому выключению электросети при появлении в ней короткого замыкания. В итоге такого процесса в электрической сети формируется ток, причем показатель его значительно превышает начальную величину данного параметра.

Период срабатывания прибора зависит от размера тока. Времятоковая характеристика наносится на поверхность прибора в виде индекса. В данной цепи катушка подключена последовательно к силовым контактам и тепловому расцепителю. При исправной эксплуатации защитного устройства контакты находятся в замкнутом состоянии.

Если возникло короткое замыкание, ток энергично увеличивается, скорость магнитного потока также возрастает, что создает перемещение сердечника, а вследствие этого и разъединение контактов, при этом электрическая сеть обесточивается.

Тепловой расцепитель защищает электрическую цепь от высокой нагрузки. Заключает в себе металлическую пластину, один конец которой соединен с механизмом расцепления. Эта пластина подключена в электросеть следом за катушкой электромагнитного расцепителя.

При достижении в сети большого тока, пластина подвергается нагреванию и изгибанию, при этом происходит контакт с рычагом. Рычаг в свою очередь срабатывает и автоматически обесточивает цепь.

Маркировка

Все автоматические выключатели, независимо от производителя и их типа, маркируются по единой схеме, включающей основные параметры:

  • название или логотип производителя;
  • указание типа, согласно номеру серии изготовителя и каталога;
  • величина рабочего напряжения: обозначение переменного тока — волнистая линия, постоянного — прямая, комбинированного — две линии сразу;
  • значение рабочего тока (указывается без величины измерения в амперах), перед величиной тока указывается тип времятоковой характеристики;
  • рабочая частота (в случае, когда используется только установленная частота);
  • коммутационная способность при коротком замыкании (в Амперах);
  • степень защиты указывается в виде IP;
  • класс ограничения тока указывается в прямоугольнике (значение от 1 до 3);
  • обозначение выводов: для соединения с нейтральным проводником — N, для подключения защитной линии — символ заземления.

Сам рычаг содержит обозначение о состоянии: «откл», «вкл» или «1», «0». Тогда как отключение происходит автоматически, включение может проводиться только вручную.

Автоматический выключатель сводит риски, вызываемые коротким замыканием или внезапным отключением света, к минимуму.

Как определить основные параметры электродвигателя?

У всех электродвигателей на корпусе есть табличка, на которой указываются его электрические характеристики. Именно об основных параметрах электродвигателей мы расскажем в этой статье.

  1. Параметры электродвигателя: таблица
  2. Параметры электродвигателя №1: мощность
  3. Параметры электродвигателя №2: потребляемый ток
  4. Параметры электродвигателя №3: тип соединения обмоток
  5. Пусковой ток электродвигателя

Параметры электродвигателя: таблица

Единица измерения

Примечание

Но иногда табличка отсутствует, либо прочесть ее невозможно. При эксплуатации двигатель неоднократно окрашивают, нередко – вместе с табличкой. Поэтому приходится определять его параметры методом измерений.

Параметры электродвигателя №1: мощность

В паспортных данных указывается номинальная активная мощность, потребляемая из сети при номинальной нагрузке на валу. Для производства измерений нужно нагрузить электродвигатель, испытывая его со штатной нагрузкой (в составе устройства, для привода которого он предназначен).

Для измерений можно использовать электросчетчик. Для этого нужно подключить электродвигатель в качестве единственной нагрузки на счетчик на время, засекаемое по секундомеру.

Для удобства расчетов двигатель подключается на время, равное 10 минутам. До подключения и через 10 минут со счетчика снимаются показания. Разность показаний в кВт∙ч, поделенная на 60/10=6, и будет равна мощности электродвигателя в киловаттах.

Некоторые электронные счетчики имеют функцию измерения мгновенной мощности, при этом задача упрощается. Нужно при работающем двигателе зайти в меню измерений счетчика и найти в нем искомое значение.

Параметры электродвигателя №2: потребляемый ток

Для измерения тока, потребляемого электродвигателем, используются токоизмерительные клещи, измеряющие ток в цепи без ее разрыва.

При использовании мультиметра (как пользоваться мультиметром?) или амперметра нужно заранее убедиться в том, что ожидаемое значение измеряемого параметра лежит в диапазоне измерений. Прибор подключается последовательно с электродвигателем или с одной из обмоток трех фаз. И не стоит забывать о пусковом токе, перед запуском прибор нужно надежно закоротить, чтобы он не сгорел.

Можно воспользоваться и электронным счетчиком с функцией измерения токов.

Если потребляемая мощность уже известна, ток можно подсчитать. Для однофазного двигателя:

Для трехфазного:

Величину напряжения тоже рекомендуется измерить, желательно – непосредственно на зажимах электродвигателя.

Если измерения производятся без нагрузки, то получится ток холостого хода. Подсчитать номинальный ток не представляется возможным, так как ток холостого хода не нормируется и составляет 20-40% от номинального. В этом случае для подсчета токов холостого хода трехфазных асинхронных электродвигателей используются данные таблицы.

Мощность двигателя, кВтТок холостого хода (в процентах от номинального)
При частоте вращения, об/мин
300015001000750600500
0,12-0,556075859095
0,75-1,5507075808590
1,5-5,5456570758085
5,5-11406065707580
15-22,5305560657075
22,5-55205055606570
55-110204045505560

Параметры электродвигателя №3: тип соединения обмоток

Это очень важный параметр трехфазного электродвигателя. Все шесть выводов начал и концов обмоток выведены в барно двигателя. Подключить их можно либо в звезду, либо в треугольник.

Рядом с символами «треугольник/звезда» на табличке указывается номинальное напряжение – «220/380 В». Это означает, что при включении в сеть трехфазного тока напряжением 380 В обмотки двигателя нужно соединить в звезду. Ошибка в соединении приведет к выходу электродвигателя из строя.

Номинальный ток также указывается через дробь. В описанном случае необходимо значение, указанное в знаменателе.

Пусковой ток электродвигателя

В момент запуска вал электродвигателя неподвижен. Чтобы его раскрутить, нужно усилие, превышающее номинальное. Поэтому и ток при пуске превышает номинальный. При раскручивании вала ток плавно уменьшается.

Пусковые токи мешают работе электрооборудования, вызывая резкие провалы напряжения. При запуске мощных агрегатов могут даже отпадать пускатели других электродвигателей, гаснуть лампы ДРЛ.

Для снижения последствий запуска применяют три способа.

  1. Переключение в процессе разгона схемы электродвигателя со звезды на треугольник.
  2. Использование электронных устройств плавного пуска.
  3. Использование частотных преобразователей.

Устройство автоматических выключателей

Принцип устройства коммутаторов, реагирующих на сверхтоки и перегрев, одинаково как для устройств типа АП, ВА или автоматических предохранителей. Выключатели типа ВА имеют клеммы с винтовым зажимом. К входной подключен подвижный контакт, который системой рычагов и пружин связан с рычагом управления.

Во включенном состоянии у него есть электрический контакт с электромагнитным расцепителем – соленоидом с подвижным сердечником-штоком. Проводник на его выходе соединен с еще одним элементом управления – биметаллической пластиной, упирающейся в шток. Дополнительным элементом устройства является дугогасительная камера – пакет пластин из электротехнического фибролита.

Расцепитель рассчитан на срабатывание при прохождении через его катушку тока определенного номинала. При достижении этого значения соленоид выталкивает шток и размыкает контакт

Обратите внимание, что биметаллическая пластина подключена к выходной клемме. Поэтому есть существенная разница в том, как поставить автоматический выключатель

Перевернутый вверх ногами, он перестает реагировать на короткое замыкание из-за дополнительного сопротивления пластины.

Принцип действия автоматического выключателя

Теперь разберемся, как работает автомат защиты сети. Подключение его осуществляется подъемом вверх рукоятки управления. Чтобы отключить АВ от сети, рычаг опускают вниз.

Когда автомат защитный электрический функционирует в обычном режиме, то электрический ток при поднятой вверх рукоятке управления поступает к аппарату через подсоединенный к верхней клемме кабель питания. Поток электронов идет к неподвижному контакту, а от него – к подвижному.

Затем по гибкому проводнику ток поступает на соленоид электромагнитного расцепителя. С него по второму гибкому проводнику электричество идет к биметаллической пластине, входящей в тепловой расцепитель. Пройдя по пластине, поток электронов через нижнюю клемму уходит в подключенную сеть.

Особенности работы теплового расцепителя

При превышении током цепи, в которой установлен автомат защиты, номинала устройства возникает перегрузка. Поток электронов высокой мощности, проходя через биметаллическую пластину, оказывает на нее термическое воздействие, делая более мягкой и заставляя выгнуться в сторону отключающего элемента. При вступлении последнего в контакт с пластиной происходит срабатывание автомата, и подача тока в цепь прекращается. Таким образом, тепловая защита позволяет не допустить чрезмерного нагревания проводника, которое может привести к расплавлению изоляционного слоя и выходу проводки из строя.

Нагревание биметаллической пластины до такой степени, чтобы она изогнулась и вызвала срабатывание АВ, происходит в течение определенного времени. Оно зависит от того, насколько величина тока превышает номинал автомата, и может занять как несколько секунд, так и час.

Срабатывание теплового расцепителя происходит в случае превышения током цепи номинала автомата как минимум на 13%. После остывания биметаллической пластины и нормализации величины текущего тока защитное устройство можно будет снова включить.

Если воздух в помещении, где установлен аппарат, имеет высокую температуру, то пластина нагреется до отключающего предела быстрее, чем обычно, и может сработать даже при незначительном возрастании тока. И наоборот, если в доме холодно, нагревание пластинки будет происходить медленнее, и время до отключения цепи увеличится.

Срабатывание теплового расцепителя, как было сказано, требует определенного времени, в течение которого ток цепи может прийти в норму. Тогда перегрузка исчезнет, и отключения устройства не произойдет. Если же величина электротока не снижается, автомат обесточивает цепь, предотвращая оплавление изоляционного слоя и не допуская возгорания кабеля.

Причиной перегрузки чаще всего становится включение в цепь устройств, суммарная мощность которых превышает расчетную для конкретно взятой линии.

Нюансы электромагнитной защиты

Электромагнитный расцепитель предназначен для защиты сети от короткого замыкания и по принципу работы отличается от теплового. Под действием сверхтоков КЗ в соленоиде возникает мощное магнитное поле. Оно сдвигает в сторону сердечник катушки, который размыкает силовые контакты защитного устройства, воздействуя на механизм расцепителя. Питание линии прекращается, благодаря чему исчезает опасность возгорания проводки, а также разрушения замкнувшей установки и автоматического выключателя.

Поскольку в случае КЗ в цепи происходит мгновенное возрастание тока до величины, способной за короткое время привести к тяжелым последствия, срабатывание автомата под воздействием электромагнитного расцепителя происходит за сотые доли секунды. Правда, при этом ток должен превысить номинал АВ в 3 и более раза.

Наглядно про автоматические выключатели на видео:

Дугогасительная камера

Когда контакты цепи, через которую протекает электрический ток, размыкаются, между ними возникает электрическая дуга, мощность которой прямо пропорциональна величине сетевого тока. Она оказывает на контакты разрушающее воздействие, поэтому для их защиты в состав устройства входит дугогасительная камера, представляющая собой набор пластинок, установленных параллельно друг другу.

При контакте с пластинами происходит дробление дуги, в результате чего снижается ее температура и происходит затухание. Газы, возникшие при появлении дуги, через специальное отверстие удаляются из корпусной части защитного устройства.

Виды автоматических выключателей — какие бывают автоматы

Автоматическими выключателями называются устройства, задача которых состоит в защите электрической линии от воздействия мощного тока, способного вызвать перегрев кабеля с дальнейшим оплавлением изоляционного слоя и возгоранием. Возрастание силы тока может быть вызвано слишком большой нагрузкой, что происходит при превышении суммарной мощностью устройств той величины, которую кабель может выдержать по своему сечению – в этом случае отключение автомата происходит не сразу, а после того, как провод нагреется до определенного уровня. При КЗ ток возрастает многократно в течение доли секунды, и устройство тут же реагирует на него, мгновенно прекращая подачу электричества в цепь. В этом материале мы расскажем, какими бывают типы автоматических выключателей и их характеристики.

Категории токоограничения

Этот термин используется для описания способности АВ произвести отключение цепи до того, как ток КЗ в ней станет максимальным. Приспособления выпускаются с токоограничением трех категорий, в зависимости от времени отключения нагрузки:

  1. 10 мс. и больше;
  2. от 6 до 10 мс;
  3. 2,5-6 мс.

Соответственно, чем выше категория, тем меньше электропроводка подвержена нагреву, а значит, снижается риск ее возгорания. На рисунке 6 указанная категория обведена красным овалом.

Маркировка ВА47-29 содержит указание на класс токоограничения

Заметим, что АВ, относящиеся к первой категории, могут не иметь соответствующей маркировки.

Виды автоматических выключателей — какие бывают автоматы

Автоматическими выключателями называются устройства, задача которых состоит в защите электрической линии от воздействия мощного тока, способного вызвать перегрев кабеля с дальнейшим оплавлением изоляционного слоя и возгоранием. Возрастание силы тока может быть вызвано слишком большой нагрузкой, что происходит при превышении суммарной мощностью устройств той величины, которую кабель может выдержать по своему сечению – в этом случае отключение автомата происходит не сразу, а после того, как провод нагреется до определенного уровня. При КЗ ток возрастает многократно в течение доли секунды, и устройство тут же реагирует на него, мгновенно прекращая подачу электричества в цепь. В этом материале мы расскажем, какими бывают типы автоматических выключателей и их характеристики.

Дифференциальные выключатели

Их еще называют автоматическими выключателями дифференциального тока – аббревиатура АВДТ. В них совмещен автомат ВА и УЗО. Их применение упрощает электрическую схему и ее монтаж – вместо двух приборов можно поставить один.

Отличить АВДТ от УЗО можно по схематическому изображению на лицевой панели, что не всегда возможно из-за недостаточной технической грамотности, или по литере перед цифрой номинала и его величине. Подробнее об этом здесь.

На устройстве защитного отключения может быть написано, например, In 16A и I∆n 10 mA. Первое значение – номинальный ток цепи, в котором может работать устройство

Обратите внимание, что перед ним нет буквенной литеры. Второе – ток срабатывания, он никогда не превышает единицы ампер

АВДТ маркируется иначе: C16 10 mA. Литера С – это времятоковая характеристика.

Правила перевода единиц

В инструкциях ко многим приборам попадаются обозначения в вольт-амперах

Различие их необходимо только специалистам, которым эти нюансы важны в профессиональном плане, но для обычных потребителей это не так важно, потому что используемые в этом случае обозначения характеризуют почти одно и то же. Что же касается киловатт/час и просто киловатт, то это две различных величины, которые нельзя путать ни при каких условиях

Чтобы определить электрическую мощность через показатель сетевого тока, можно использовать различные инструменты, с помощью которых производятся замеры и вычисления:

  • с помощью тестера;
  • используя токоизмерительные клещи;
  • производя вычисления на калькуляторе;
  • с помощью специальных справочников.

Применив тестер, мы измеряем напряжение в интересующей нас электросети, а после этого используем токоизмерительные клещи для определения силы тока. Получив нужные показатели, и применив существующую формулу расчета постоянного и переменного тока, можно рассчитать мощность. Имеющийся результат в ваттах при этом делим на 1000 и получаем количество киловатт.

Однофазная электрическая цепь

В основном все бытовые электросети относятся к сетям с одной фазой, в которых применяется напряжение на 220 вольт. Маркировка нагрузки для них записывается в киловаттах, а сила тока в амперах и обозначается как АВ.

Для перевода одних единиц в другие, применяется формула закона Ома, который гласит, что мощность (P) равна силе тока (I), умноженной на напряжение (U). То есть, расчет будет выглядеть так:

Вт = 1А х 1В

На практике такой расчет можно применить, например, к обозначениям на старых счетчиках учета расхода электроэнергии, где установленный автомат рассчитан на 12 А. Подставив в имеющуюся формулу цифровые значения, получаем:

12А х 220В = 2640 Вт = 2,6 КВт

Расчеты для электрической сети с постоянным и переменным током практически ничем не отличаются, но справедливы только при наличии активных приборов, которые потребляют энергию, например, электрические лампы накаливания. А когда в сеть включены приборы с емкостной нагрузкой, тогда появляется сдвиг фаз между током и напряжением, который является коэффициентом мощности, записываемым как cos φ. При наличии только активной нагрузки, этот параметр обычно равен 1, а вот при реактивной нагрузке в сети, его приходится учитывать.

В случаях, когда нагрузка в сети смешанная, значение этого параметра колеблется около 0,85. Уменьшение реактивной составляющей мощности, ведет к уменьшению потерь в сети, что повышает коэффициент мощности. Многие производители при маркировке прибора, указывают этот параметр на этикетке.

Трехфазная электрическая сеть

Если брать пример с трехфазной сетью, то здесь все обстоит несколько по-другому, так как задействовано три фазы. Производя расчеты, нужно взять значение электрического тока одной из фаз, которое умножается на величину напряжения в этой фазе, после чего полученный результат умножается на cos φ, то есть на сдвиг фаз.

Сосчитав, таким образом, напряжение в каждой фазе, складываем полученные результаты и получаем суммарную мощность прибора, который подключен к трехфазной сети. В формулах это выглядит так:

Ватт = √3 Ампер х Вольт или Р = √3 х U x I

Ампер = √3 Вольт или I = P/√3 x U

При этом нужно иметь в виду, что существует разница фазного и линейного напряжения и тока. Но формула расчета остается одной и то же, кроме случая, когда соединение сделано в виде треугольника, и нужно произвести расчет нагрузки индивидуального подключения.

Обозначение УЗО на однолинейной схеме

Это вид выключающего аппарата, в функции которого входит разъединение сети или ее части, когда произошло превышение определенной отметки дифференциального тока. Устройство способствует повышению электробезопасности, предотвращает возникновение чрезвычайных ситуаций, как в производственной сфере, так и дома. Схема подключения УЗО проста, но недочеты при монтаже могут привести к серьезным неприятностям.

Так можно обозначить УЗО на принципиальной схеме.

УЗО вместе с другими элементами в проектной документации чаще всего выполняют условно, что затрудняет расшифровку принципа работы как всей схемы, так и отдельно взятых элементов. Изображение защитного устройства может выглядеть как обычный выключатель. Но на нелинейной схеме он представляет собой два параллельно расположенных выключателя. На однолинейной –  элементы, провода и полюса изображаются символически.

Подключение нулевого и заземляющего провода после УЗО

Любое схематическое изображение должно быть правильно составлено, а в дальнейшем прочитано. Самый маленький изъян может привести к неисправности УЗО или всей системы

Важно учитывать следующие часто встречающиеся ошибки:

  • Ноль и заземление соединяются после защитного устройства. Если схема неправильно интерпретирована, нейтраль может быть соединена с открытой частью электроустановки или с нулевым защитным проводником.
  • Если устройство подключено неполнофазно, возникает ложное срабатывание автомата.
  • Неправильное соединение проводников в розетках приводит к срабатыванию устройства, даже если в розетку ничего не включено.
  • Соединение нулевых проводников двух автоматов приводит к неконтролированным отключениям.
  • Распространенной ошибкой является ситуация, когда перепутаны фазы и нули, относящиеся к разным устройствам.
  • Несоблюдение полярности ведет к движению токов в одном направлении. Перед установкой следует внимательно ознакомиться с расположением клемм.

Всегда выполняется предварительная схема, с учетом возможных ошибок, происходящих в сети. Если документ составлен правильно, работа защитного устройства приносит эффект.

Пример реального проекта

Трехфазное устройство защитного отключения (УЗО)

Однолинейная принципиальная схема (ОПС) не что иное, как чертеж плана, например, квартиры. На нем должны быть указаны распределительные группы. Для этого необходимо измерить все стены и выполнить чертеж с соблюдением масштаба. Понадобится несколько копий, что бы на каждой изобразить отдельную группу.

Распределительные группы – это точки, которые будут подключены к одному автомату квартирного щитка. Всю проводку нельзя подключать к одной группе. В противном случае понадобится мощный кабель, который будет способен выдержать нагрузку всех приборов.

В зависимости от количества комнат и наличия энергопотребляющих устройств распределительные группы могут выглядеть следующим образом.

  • освещение комнаты, прихожей и кухни;
  • свет и розетки в туалете;
  • розетки в жилой комнате;
  • розетки в коридоре и кухне;
  • электрическая плита.

Помещения с повышенной влажностью рекомендуется подключать отдельной группой, для которой необходима установка УЗО. Если в квартире есть маленькие дети, защитное устройство подключают на каждую группу.

Принципиальная, или однолинейная схема необходима для правильного подключения щитовой и распределительных групп.

В данном примере отражено подключение к трехфазному питанию. Всю квартиру питает вводный кабель из 5 жил, сечением 10 мм2. Фазы пронумерованы, как L1, L2, L3, заземление – PE, которое замыкается с нолем. Вводный автомат (ВА) отключает все автоматы групп, которые маркируются таким же способом.

Количество фаз определяется по количеству черточек на схеме. Однофазная – \,  или трехфазная – \\\. Маркировка провода ВВГ НГ говорит о том, что он с негорящей изоляцией, трехжильный с сечением 1,5 мм2.

Чертеж дает возможность определиться с количеством и маркой нужных защитных устройств. Подсчитать число выключателей и розеток, а также, сколько метров кабеля потребуется.

Все соединения проводов должны находиться в распределительных коробках. Рекомендуется для каждого помещения отдельная коробка. Если, например, в кухне располагается газовый котел и другие электроприборы, потребуются две распределительные коробки.

Особых требований по установлению розеток и выключателей не существует. Их устанавливают так, чтобы было удобно. На кухне и на рабочем месте розетки размещают над столом.

Назначение и разновидности автоматов

Автоматический выключатель – предохранительное устройство, которое перекрывает поступление тока в проводку при перегрузке в сети и/или коротком замыкании. Это происходит с помощью расцепителя. Он бывает трех видов, от которых зависит прямое назначение выключателя.Тепловой служит для защиты от перегрузок в сети, представляет собой биметаллическую пластину теплового реле. При превышении значения номинального тока она нагревается, расширяется и выгибается, толкая рычаг, который разрывает соединение.

Второй тип – электромагнитный. Это система из катушки, сердечника и пружины, предназначенная для защиты от короткого замыкания. При резком увеличении силы тока, проходящего через катушку, меняется магнитное поле, это в свою очередь меняет положение сердечника, приводя к сжатию пружины и срабатыванию рычага.

Есть и универсальный вариант — комбинированный. Он объединяет в себе оба вышеописанных механизма, защищая одновременно и от перегрузок, и от скачков напряжения.

По конструкции автоматические выключатели разделяются на несколько разновидностей в зависимости от силы тока, на которую они рассчитаны:

  • воздушный – от 800 до 6300 А;
  • в литом корпусе – от 10 до 2500 А;
  • модульный – от 0,5 до 125 А.

Есть разделение автоматических выключателей и по времени срабатывания. Это характеристика, которая определяет скорость расцепления. В зависимости от её значения выделяют опять же три типа. Первый – нормальные (0,02-0,1 с), далее идут селективные (до 1 с) и быстродействующие с токоограничивающим эффектом (до 0,05 с). Последние являются особо долговечными и эффективными. Такой автомат срабатывает перед самой перегрузкой, до сильного повышения тока. Для выбора по данному параметру необходимо учесть силу перегрузок, которые могут возникнуть, и их частоту. Чем они выше и чем чаще происходят, тем быстрее устройство должно на них реагировать.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий