Аварийный ручной выключатель двигателя

AVR-02 блок ввода резерва

Данное устройство является многофункциональным и с помощью него можно построить 8 разных схем АВР. Чаще всего применяются три из них:

ввод№1+ввод№2

ввод№1+генератор

ввод№1+ввод№2+генератор

Рассмотрим сначала самую сложную, которая с двумя вводами и генератором. Второй ввод может быть как от отдельной ВЛ-0,4кв или непосредственно КЛ с ближайшей ТП, так и собран на аккумуляторном ИБП с гибридными инверторами.

При этом, на варианте с источником бесперебойного питания, следует предусмотреть ситуацию, когда аккумуляторы разряжаются до допустимого максимума, а потом происходит переключение на генератор. Это очень удобно, дабы не гонять дизельгенератор при кратковременных перерывах в электроснабжении.

Какими функциональными возможностями обладает AVR-02?

она управляет силовыми элементами – контакторами или пускателями. Также могут использоваться мотор приводы.

контролирует чередование фаз

контролирует синфазность вводов

формирует сигнал запуска генератора

может работать от внешней батареи 12В

измеряет уровень напряжений и отключает неисправную линию с низким или высоким напряжением, автоматически переводя питание на ту, где все нормально

формирует сигнал авария

На передней панели AVR-02 расположены:

двухстрочный жидкокристаллический дисплей

кнопки навигации

светодиодные индикаторы №1 и №2 – показывают подключенный ввод

К1,К2,К3,К4 – состояние исполнительных реле

Функции реле перегрузки

Реле перегрузки:

• При пуске электродвигателя позволяют выдерживать временные перегрузки без разрыва цепи.

• Размыкают цепь электродвигателя, если ток превышает предельно допустимое значение и возникает угроза повреждения электродвигателя.

• Устанавливаются в исходное положение автоматически или вручную после устранения перегрузки.

IEC и NEMA стандартизуют классы срабатывания реле перегрузки.

Обозначение класса срабатывания

Как правило, реле перегрузки реагируют на условия перегрузки в соответствии с характеристикой срабатывания. Для любого стандарта (NEMA или IEC) деление изделий на классы определяет, какой период времени требуется реле на размыкание при перегрузке. Наиболее часто встречающиеся классы: 10, 20 и 30. Цифровое обозначение отражает время, необходимое реле для срабатывания. Реле перегрузки класса 10 срабатывает в течение 10 секунд и менее при 600% тока полной нагрузки, реле класса 20 срабатывает в течение 20 секунд и менее, а реле класса 30 — в течение 30 секунд и менее.

Угол наклона характеристики срабатывания зависит от класса защиты электродвигателя. Электродвигатели IEC обычно адаптированы к определённому варианту использования. Это означает, что реле перегрузки может справляться с избыточным током, величина которого очень близка к максимальной производительности реле. Класс 10 — самый распространённый класс для электродвигателей IEC. Электродвигатели NEMA имеют внутренний конденсатор большей ёмкости, поэтому класс 20 для них применяется чаще.

Реле класса 10 обычно используется для электродвигателей насосов, так как время разгона электродвигателей составляет около 0,1-1 секунды. Для многих высокоинерционных промышленных нагрузок необходимо для срабатывания реле класса 20.

Сочетание плавких предохранителей с реле перегрузки

Плавкие предохранители служат для того, чтобы защитить установку от повреждений, которые могут быть вызваны коротким замыканием. В связи с этим плавкие предохранители должны иметь достаточную ёмкость. Более низкие токи изолируются с помощью реле перегрузки. Здесь номинальный ток плавкого предохранителя соответствует не рабочему диапазону электродвигателя, а току, который может повредить наиболее слабые составляющие установки. Как было упомянуто ранее, плавкий предохранитель обеспечивает защиту от короткого замыкания, но не защиту от перегрузок при низком токе.

На рисунке представлены наиболее важные параметры, формирующие основу согласованной работы плавких предохранителей в сочетании с реле перегрузки.

Очень важно, чтобы плавкий предохранитель сработал прежде, чем другие детали установки получат тепловое повреждение в результате короткого замыкания

Как устроена схема аварийной сигнализации?

Из-за большого количества соединительных проводов современная схема аварийной сигнализации значительно усложнилась по сравнению с ее прототипом, и состоит в следующем: вся систему запитывается только лишь от аккумуляторной батареи, так можно обеспечить ее полноценную работу даже в случае выключенного зажигания, т.е. во время стоянки транспортного средства. В это время все необходимые лампы соединяются посредством контактов включателя сигнализации.

При включенной аварийной сигнализации цепь питания работает следующим образом: напряжение подается от аккумулятора на контакты монтажного блока, далее оно через предохранитель поступает непосредственно на выключатель аварийной сигнализации. Последний же соединяется с блоком во время нажатия кнопки. Затем оно, опять проходя через монтажный блок, поступает на реле-прерывателя поворотов.

Цепь нагрузки имеет следующую схему: реле аварийной сигнализации соединено с контактами, которые при нажатии кнопки приходят в замкнутое положение между собой, таким образом, они соединяют абсолютно все необходимые лампы. В это время параллельно включается и контрольная лампа посредством контактов выключателя аварийной сигнализации. Схема подключения кнопки аварийной сигнализации достаточно проста, и на освоение у вас уйдет не более получаса. Необходимо помнить о ее значимости, поэтому обязательно следите за ее состоянием.

Источник

Проверка цепи включения топливного насоса

Если при включении зажигания топливный насос не включается (его работу можно проконтролировать на слух) — возможна неисправность, как самого топливного насоса, так и цепи его включения. Проверку цепи включения топливного насоса начинаем с оценки целостности предохранителя F111 (15 А), расположенного в монтажном блоке в салоне.

Неисправный предохранитель топливного насоса заменяем новым, предварительно проверив, нет ли замыкания одного из выводов гнезда предохранителя на «массу». Неисправность в цепи включения топливного насоса может быть вызвана повреждением реле R19 насоса в монтажном блоке. Для проверки реле…

…извлекаем его из монтажного блока и заменяем заведомо исправным. Для этой цели можно использовать реле R2 звукового сигнала. Если с вновь установленным реле топливный насос включается, то реле топливного насоса вышло из строя и его необходимо заменить. Однако наиболее вероятной причиной отключения топливного насоса является срабатывание аварийного выключателя системы подачи топлива. В условиях эксплуатации попадание колеса (особенно переднего левого) в выбоину на проезжей части или удар им о препятствие, а также даже легкое столкновение с другим транспортным средством приводит к отключению «минусового» провода топливного насоса.

Выключатель расположен за облицовкой порога двери водителя. Его можно перевести в замкнутое состояние, нажав на него пальцем через отверстие в облицовке.

Сняв обивку, можно проверить работоспособность выключателя

Отсоединив разъем, замыкаем контакты колодки проводов отрезком провода. Если электропитание топливного насоса восстановилось, то выключатель неисправен и подлежит замене.

Обозначение TP

TP — аббревиатура «thermal protection» — тепловая защита. Существуют различные типы тепловой защиты, которые обозначаются кодом TP (TPxxx). Код включает в себя:

  • Тип тепловой перегрузки, для которой была разработана тепловая защита (1-я цифра)
  • Число уровней и тип действия (2-я цифра)
  • Категорию встроенной тепловой защиты (3-я цифра)

В электродвигателях насосов, самыми распространёнными обозначениями TP являются:

TP 111: Защита от постепенной перегрузки

TP 211: Защита как от быстрой, так и от постепенной перегрузки.

Обозначение Техническая егрузка и ее варианты (1-я цифра) Количество уровней и функциональная область (2-я цифра) Категория 1 (3-я цифра)
ТР 111 Только медленно (постоянная перегрузка) 1 уровень при отключении 1
ТР 112 2
ТР 121 2 уровня при аварийном сигнале и отключении 1
ТР 122 2
ТР 211 Медленно и быстро (постоянная перегрузка, блокировка) 1 уровень при отключении 1
ТР 212 2
ТР 221 ТР 222 2 уровня при аварийном сигнале и отключении 1
2
ТР 311 ТР 321 Только быстро (блокировка) 1 уровень при отключении 1
2

Изображение допустимого температурного уровня при воздействии на электродвигатель высокой температуры. Категория 2 допускает более высокие температуры, чем категория 1.

Все однофазные электродвигатели Grundfos оснащены защитой двигателя по току и температуре в соответствии с IEC 60034-11. Тип защиты двигателя TP 211 означает, что она реагирует как на постепенное, так и на быстрое повышение температуры.

Сброс данных в устройстве и возврат в начальное положение осуществляется автоматически. Трёхфазные электродвигатели Grundfos MG мощностью от 3.0 кВт стандартно оборудованы датчиком температуры PTC.

Эти электродвигатели были испытаны и одобрены как электродвигатели TP 211, которые реагируют и на медленное, и на быстрое повышение температуры. Другие электродвигатели, используемые для насосов Grundfos (MMG модели D и E, Siemens, и т.п.), могут быть классифицированы как TP 211, но, как правило, они имеют тип защиты TP 111.

Необходимо всегда учитывать данные, указанные на фирменной табличке. Информацию о типе защиты конкретного электродвигателя можно найти на фирменной табличке — маркировка с буквенным обозначением TP (тепловая защита) согласно IEC 60034-11. Как правило, внутренняя защита может быть организована при помощи двух типов устройств защиты: Устройств тепловой защиты или терморезисторов.

Продолжение проверки

Далее, что делать, если не работают поворотники и аварийка? Если реле с разъемом и кнопкой точно гожие (в чем мы убедились в ходе проверок), можно поискать и другие причины неполадок

К примеру, обратить внимание на переключатель поворотов на руле. Бывает, что там отсутствует контакт напряжения

Проверка осуществляется без участия переключателя на разъемах реле: при помощи кусочка провода можно замкнуть соответствующие контакты.

Если поворотники заработали, то, значит, неисправен именно данный рулевой переключатель (на него не поступает ток по какой-то причине). Здесь уже без должной подготовки самостоятельно заменить или отремонтировать деталь будет довольно трудно, так как придется снимать руль и сам переключатель. В данном случае лучше обратиться к услугам электрика на СТО.

Одним из основных приборов в системе световой аварийной сигнализации мигающего типа, устанавливаемых на автомобилях и других механических транспортных средствах, является выключатель аварийной сигнализации.

Функции защитных устройств электродвигателей

Современные защитные устройства, или другими словами, автоматы защиты электродвигателя, (мотор автоматы), часто совмещаются в одном корпусе с коммутационными аппаратами запуска (пускателями) и выполняют такие функции:

  • Защита от тока короткого замыкания в цепи питания или внутри электродвигателя;
  • Защита от длительных перегрузок, связанных с превышением механической нагрузки на валу двигателя;
  • Предохранение от асимметрии (дисбаланса) фаз, или обрыва фазного провода;

    Современные мотор автоматы с ручным управлением

  • Тепловая защита от перегрева двигателя, осуществляемая при помощи дополнительных термодатчиков, установленных на кожухе или внутри электродвигателя;
  • Предохранение от некачественного напряжения;
  • Обеспечение выдержки времени для охлаждения двигателя после его аварийной остановки после перегрева;
  • Индикация режимов работы и аварийных состояний;
  • Опционально – отключение при исчезновении нагрузки на валу (например, для водяных насосов);
  • Совместимость с автоматическими системами контроля и управления.

Мотор автомат с ручной настройкой и автоматическим управлением

Ранее и до недавнего времени наиболее используемой схемой защиты электродвигателей было подключение в корпусе пускателя теплового реле, последовательно с контактором. Биметаллическая пластина теплового реле при длительной перегрузке нагревается и прерывает цепь самоподхвата контактора. Кратковременное превышение номинальной нагрузки при запуске мотора является недостаточным для нагрева и срабатывания биметаллической пластины. Более подробно о тепловом реле и его подключении можно прочитать в соответствующем разделе данного ресурса.

Контактор электромотора с тепловым реле

Подбор автоматического выключателя

Поскольку первые две функции могут осуществляться обычными автоматическими выключателями, многие пользователи применяют их для защиты своих электродвигателей. Основным недостатком такого способа является отсутствие защиты от дисбаланса, обрыва фаз и скачков напряжения. Выбор защитного автомата осуществляется по его время токовой характеристике и по максимальному пусковому току электродвигателя.

Трехфазный автоматический выключатель

Чтобы правильно подобрать автоматический выключатель по категории и номинальному току, нужно изучить его время токовую характеристику, о которой подробно рассказывается на одной из страниц данного сайта. Категории автоматов (А, B, C, D) определяются соотношением тока отсечки электромагнитного расцепителя к номинальному значению. Нужно иметь в виду, что время токовая характеристика категории не зависит от номинала автоматического выключателя.

Времятоковая характеристика автоматических выключателей категории «C»

Для предотвращения ложного срабатывания автоматического выключателя при запуске электромотора необходимо, чтобы кратковременный пусковой ток (Iпуск)  не превышал значение отсечки (мгновенного срабатывания, Iмгн.ср) автомата. Отношение пускового (Iпуск) и номинального тока (In) можно узнать из бирки или паспорта электродвигателя, максимальное значение Iпуск/ In=7.

Бирка двигателя с указанием мощности

Практические расчеты

На практике применяют поправочный коэффициент надежности Kн, который для автоматов с In<100A равен 1,4, а для In>100A принимают Kн=1,25. Поэтому должно соблюдаться условие Iмгн.ср  ≥ Kн * Iпуск. Вначале автомат выбирают, исходя из наиболее близкого значения номинального тока автоматического выключателя IAB (указывается на корпусе) к рабочему току двигателя (In). Необходимое условие: IAB > In/Кт, где Кт = 0,85 – температурный коэффициент, если автомат устанавливается в шкафу или щитке, иначе Кт=1.

Например, имеется двигатель мощностью 5,5 кВт, η = 85%=0,85; cosφ = 0,8; Iпуск/ In = 7. Вначале нужно рассчитать In­ = Рn/(Un*√3*η*cosφ) =  5500/(380*√3*0,85*0,8) = 12,28 (А). Допустим, автомат устанавливается в шкаф, Кт = 0,85,  значит In/Кт = 12,28/0,85 = 14,44 (А). Наиболее близким является автоматический выключатель на 16А, категории С, (ток мгновенного срабатывания в десять раз превышает номинальное значение).

При расчетах понадобится калькулятор

Теперь нужно проверить условие Iмгн.ср  ≥ Kн * Iпуск. Мгновенное срабатывание защитного автомата наступает при Iмгн.ср = 16*10 = 160 (A), пусковой ток Iпуск= In*7 = 12,28*7 = 85,96 (А). Умножаем на Kн (1,4) — 85,96*1,4 = 120,3 (А). Проверяем условие 160 ≥ 120,3 — это значит, что автомат выбран верно. Для упрощенных расчетов, можно принимать номинальный ток двигателя, равным удвоению его мощности, выраженной в киловаттах.

Это интересно: На двух фазах из трех напряжение 400 В: в чем причина?

Применение

Аварийные тросовые выключатели имеют большое значение для интерфейса «человек-машина» в области промышленного применения. Они, например, применяются на транспортных и конвейерных системах. После ручного приведения в действие, функциональные процессы инициируются или отключаются. После того, как новый европейский стандарт EN 60947-5-5 относительно функциональных аспектов и руководства по проектированию выключателей аварийного останова вступил в силу, предъявляются новые требования к данным командным устройствам. Все аварийные тросовые выключатели, представленные в данном соответствуют требованиям этого стандарта.

Что такое контрольная цепь

Контрольная цепь – это электрическая схема, которая проверяет, всё ли в порядке с данным оборудованием.

Например, включены все защитные автоматы и мотор-автоматы, не сработала ли тепловая защита, проверяет закрытие всех дверей, люков, наличие ограждений, и тому подобное.

Словом, такая схема даёт возможность предотвратить неправильную или опасную работу оборудования. Иными словами, наличие контрольной цепи позволяет соблюсти технологический процесс и сохранить здоровье и даже жизнь обслуживающему персоналу.

Естественно, контрольные цепи должны обеспечивать с электрической (схемотехнической) точки зрения всё, что я перечислил выше.

Другие названия контрольной цепи – цепь безопасности, защитная цепь, аварийная цепь, и др.

В этой статье я постараюсь перечислить и сравнить известные мне варианты схемотехнических решений контрольных цепей.

Схема АВР с реле контроля напряжения

Схема АВР на 2 пускателя Вторая схема немного посложнее.

В данной схеме катушка реле питается от основного ввода, и в нормальном режиме его сердечник притянут, левый по схеме контакт К1 замкнут, правый разомкнут. В состав устройства ввода резервного напряжения, как правило, входит некоторое количество реле. Так как оба ввода в работе, отпадает необходимость следить за готовностью резервной линии к принятию нагрузки.

Схема работает аналогично. Схема АВР Как видно, предложенная схема АВР отличается простотой: для ее сборки потребуется всего два магнитных пускателя, значение номинального тока величина которых должна превышать токи нагрузки.

Основным источником служит линия подстанции, а резервным — другая линия, получающая питание от другой электростанции, либо от автономного источника питания, например от промышленного генератора на жидком топливе или от батареи аккумуляторов, как это часто бывает в частных домах. Так решается задача определения напряжения в основной линии. Это один из самых надежных способов создать бесперебойную подачу электричества. При пропадании напряжения на главном вводе К1.

Схема АВР с реле контроля фаз.

Комментарии к статье: 2 Простые схемы АВР на контакторах Электроснабжение любого объекта должно быть бесперебойным, но внезапные отключения электроэнергии, к сожалению, не исключены. Она состоит из двух однополюсных автоматических выключателей, одного контактора и одного двухполюсного автоматического выключателя.

Задачу можно было бы считать решенной, но пуск мотора на углеводородном топливе состоит из нескольких этапов. АВР на одном контакторе Для однофазной домашней сети подойдет схема автоматического ввода резерва, выполненная на одном контакторе. В нашем случае это реле. Причем генератор должен запускаться автоматически.

Таким образом, питание потребителя будет включено от резервного ввода через замкнувшиеся силовые контакты магнитного пускателя КМ2. В случае, когда напряжение идет на ввод 1, а на нём происходит аварийная ситуация, нагрузка переходит на ввод 2. Принципы их построения одинаковы как для потребителей электроэнергии I, так и II категории. Данные аппараты могут устанавливаться в отдельных шкафах. Практически все реле контроля фаз имеют одинаковое устройство: индикация нормального и аварийного состояния сети, измерительная и силовая часть.

В основном, это программируемый контроллер в блоке с выходными реле. Оно необходимо для контроля напряжения 3-х фазной сети правильное чередование фаз и их номинальное значение. АВР, это устройство, являющееся составляющей релейных защит и систем автоматики, и служит для обеспечения бесперебойного питания потребителей электрической энергии.
Схемы управления магнитным пускателем

Как снять и подключить евро кнопку аварийки на ВАЗ

Перед тем, как приступить к установке аварийки, следует ознакомиться со схемой подключения евро кнопки на ВАЗ-2114 (2115), которую мы будем использовать в качестве примера.


Данная схема позволяет избегать применения реле и вмешательства в штатную проводку.

  • Соединённые контакты старого разъёма «1» и «3» – к выводу «2» на кнопке аварийки;
  • Вывод «2» на кнопке – к выводу «D»;
  • Контакт «7» – к контакту «1» на кнопке»;
  • Вывод «B» – к подсветке;
  • Выводы «А» и «С» – это масса;
  • Выводы «8» и «4» в колодке старого разъёма перемкнуты.

Для замены кнопки аварийки нам потребуется следующее:

  • Евро кнопка с колодкой под неё;
  • Два диода 1N4007;
  • Паяльник;
  • Флюс ЛТИ-120;
  • Отвёртка;
  • Две клеммы.

Подготовив все необходимые инструменты, переходим к замене старой аварийки на примере автомобиля ВАЗ-2114 (2115) и выключателя аварийной сигнализации 2515 996.3710-07.10 исходя из приведённой выше схемы.

  1. При помощи отвёртки разбираем рулевой кожух;
  2. Извлекаем фишку из старого выключателя и сам выключатель из кожуха;
  3. Откручиваем два винта и снимаем боковую панель со стороны водителя;
  4. Протягиваем освобождённую фишку в окошко, где обычно располагается бортовой компьютер;
  5. Разбираем старую аварийную кнопку при помощи плоской отвёртки – в ней есть два паза, поддев за которые её можно разъединить на две части;
  6. Колодку старого разъёма аварийки оставляем себе, пружину можно выкинуть – она нам больше не понадобится.
  7. Затем приступаем к подключению новых контактов и выключателя:
  8. Чтобы получилась надёжная спайка, предварительно поверхности контактов необходимо залудить кислотой ЛТИ-120;
  9. Контакты «4» и «8» фишки сразу смыкаем друг с другом, используя проводок;
  10. К этой же фишке к контактам «1» и «3» припаиваем два диода катодами к ней, а аноды смыкаем между собой;
  11. Провода нового выключателя с контакта «2» и «D» припаиваем к свободным анодам диодов;
  12. Чтобы мигал треугольный значок индикации аварийного сигнала, провод контакта «2», обозначенный на схеме как «к приборке», подводим к щитку приборов и подсоединяем к свободному контакту (не забудьте вставить в приборку лампочку, так как заводом она не предусмотрена);
  13. Припаиваем провод, идущий от контакта «1» аварийной кнопки к контакту «7» на фишке;
  14. Оставшиеся контакты подсоединяемого выключателя «А» и «B» идут на массу и подсветку соответственно. Возьмите две клеммы с проводками и припаяйте их к контактам «A» и «B». В случае необходимости это позволит убрать все новые провода, не затрагивая при этом старую проводку;
  15. Подключаем новый жгут проводов к проводке, а свободные концы контактов «A» и «B», к которым были припаяны клеммы, подводим к свободно болтающейся фишке на противотуманки.

Алгоритм №2 — ввод №1 неисправен

Напряжение на вводе №1 исчезло. AVR-02 видит, что на А1,В1,С1 напряжения нет, зато на А2,В2,С2 оно есть. Поэтому К5 переключается в позицию №11.

Далее U с ввода-2 поступает через 11 на 10 и потом вся схема повторяется как было рассмотрено ранее.

Только в этом случае происходит замыкание не К1, а К2. И соответственно катушки контактора КМ2.

При этом устройство следит за тем, чтобы напряжение на №13,14,15 отсутствовало. Дабы не получилось встречного включения питания (при залипании контактов и восстановлении эл.снабжения).

Если же напряжение хотя бы на одном из разъемов 13-14-15 есть, то катушка КМ2 никогда не сработает. Это и есть защита от встречного напряжения.

АВР с автозапуском генератора

А как будет запускаться генератор, если исчезнет питание с обоих вводов? Контакт №12 служит для подключения к АВР внешнего источника питания +12В.

Когда у вас пропало напряжение на двух вводах, все контакты К1,К2,К3 получаются в разомкнутом состоянии. При этом автоматически происходит замыкание внутреннего контакта реле К4. За счет этого, формируется сигнал запуска для генератора.

Большинство генераторов с возможностью АВР, управляют заслонкой своей собственной автоматикой. Для этого им нужен только сигнал на старт. Вы его как раз и подаете.

Если у вас этого нет, то можно смастерить такую систему самостоятельно.

После подачи импульса, происходит запуск ДГУ и его прогрев. Когда он прогрелся, напряжение на реле KV1 достигает нормы. KV1 представляет из себя, что-то вроде реле защиты трехфазных двигателей.

Оно необходимо для контроля напряжения 3-х фазной сети (правильное чередование фаз и их номинальное значение). Подойдет например такое — CKF-317.

После срабатывания, реле KV1 замыкает свой контакт KV1.1 и напряжение достигает разъема №16. Также U поступает на контакт №9 (он управляет внутренними цепями AVR) и №22.

AVR это видит и подает сигнал на замыкание реле К3 и катушки КМ3. После чего включаются силовые контакты пускателя генератора КМ3.1 Вся нагрузка запитывается от генератора.

Принцип действия теплового автоматического выключателя

На графике справа показана зависимость сопротивления от температуры для стандартного теплового автоматического выключателя. У каждого производителя эта характеристика своя. TN обычно лежит в интервале 150-160 °C.

Подключение

Подключение трёхфазного электродвигателя со встроенным тепловым выключателем и реле перегрузки.

Обозначение TP на графике

Защита по стандарту IEC 60034-11:

TP 111 (постепенная перегрузка). Для того чтобы обеспечить защиту при блокировке ротора, электродвигатель должен быть оборудован реле перегрузки.

Терморезисторы, встраиваемые в обмотки

Второй тип внутренней защиты — это терморезисторы, или датчики с положительным температурным коэффициентом (PTC). Терморезисторы встраиваются в обмотки электродвигателя и защищают его при блокировке ротора, продолжительной перегрузке и высокой температуре окружающей среды. Тепловая защита обеспечивается с помощью контроля температуры обмоток электродвигателя с помощью PTC датчиков. Если температура обмоток превышает температуру отключения, сопротивление датчика меняется соответственно изменению температуры.

В результате такого изменения внутренние реле обесточивают контур управления внешнего контактора. Электродвигатель охлаждается, и восстанавливается приемлемая температура обмотки электродвигателя, сопротивление датчика понижается до исходного уровня. В этот момент происходит автоматическое приведение модуля управления в исходное положение, если только он предварительно не был настроен на сброс данных и повторное включение вручную.

Если терморезисторы установлены на концах катушки самостоятельно, защиту можно классифицировать только как TP 111. Причина в том, что терморезисторы не имеют полного контакта с концами катушки, и, следовательно, не могут реагировать так быстро, как если бы они изначально были встроены в обмотку.

Система, чувствительная к температуре терморезистора, состоит из датчиков с положительным температурным коэффициентом (PTC), устанавливаемых последовательно, и твердотельного электронного выключателя в закрытом блоке управления. Набор датчиков состоит из трёх — по одному на фазу. Сопротивление в датчике остаётся относительно низким и постоянным в широком диапазоне температур, с резким увеличением при температуре срабатывания. В таких случаях датчик действует как твердотельный тепловой автоматический выключатель и обесточивает контрольное реле. Реле размыкает цепь управления всего механизма для отключения защищаемого оборудования. Когда температура обмотки восстанавливается до допустимого значения, блок управления можно привести в прежнее положение вручную.

Все электродвигатели Grundfos мощностью от 3 кВт и выше оснащены терморезисторами. Система терморезисторов с положительным температурным коэффициентом (PTC) считается устойчивой к отказам, так как в результате выхода из строя датчика или отсоединении провода датчика возникает бесконечное сопротивление, и система срабатывает так же, как при повышении температуры, — происходит обесточивание контрольного реле.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий

Adblock
detector