Урок по Arduino №2: для чего нужны аналоговые входы на Arduino и как их использовать?

Элементы платы

Микроконтроллер ATmega328P

Сердцем платформы Arduino Uno является 8-битный микроконтроллер фирмы Microchip — ATmega328P на архитектуре AVR с тактовой частотой 16 МГц.
Контроллер обладает тремя видами памяти:

  • 32 КБ Flash-памяти, из которых 0,5 КБ используются загрузчиком, который позволяет прошивать Uno с обычного компьютера через USB. Flash-память постоянна и её предназначение — хранение программ и сопутствующих статичных ресурсов.
  • 2 КБ RAM-памяти, которые предназначены для хранения временных данных, например переменных программы. По сути, это оперативная память платформы. RAM-память энергозависимая, при выключении питания все данные сотрутся.
  • 1 КБ энергонезависимой EEPROM-памяти для долговременного хранения данных, которые не стираются при выключении контроллера. По своему назначению это аналог жёсткого диска для Uno.

Микроконтроллер ATmega16U2

Микроконтроллер не содержит USB интерфейса, поэтому для прошивки и коммуникации с ПК на плате присутствует дополнительный микроконтроллер ATmega16U2 с прошивкой USB-UART преобразователя. При подключении к ПК Arduino Uno определяется как виртуальный COM-порт.

общается с ПК через по интерфейсу UART используя сигналы и , которые параллельно выведены на контакты и платы Uno. Во время прошивки и отладки программы, не используйте эти пины в своём проекте.

Светодиодная индикация

Имя светодиода Назначение
ONИндикатор питания платформы.
L Пользовательский светодиод на пине микроконтроллера. Используйте определение для работы со светодиодом. При задании значения высокого уровня светодиод включается, при низком – выключается.
RX и TXМигают при прошивке и обмене данными между Uno и компьютером. А также при использовании пинов и .

Порт USB Type-B

Разъём USB Type-B предназначен для прошивки и питания платформы Arduino. Для подключения к ПК понадобится кабель USB (A — B).

Понижающий регулятор 5V

Понижающий линейный преобразователь NCP1117ST50T3G обеспечивает питание микроконтроллера и другой логики платы при подключении питания через или пин Vin. Диапазон входного напряжения от 7 до 12 вольт. Выходное напряжение 5 В с максимальным выходным током 1 А.

Понижающий регулятор 3V3

Понижающий линейный преобразователь LP2985-33DBVR обеспечивает напряжение на пине . Регулятор принимает входное напряжение от линии 5 вольт и выдаёт напряжение 3,3 В с максимальным выходным током 150 мА.

ICSP-разъём ATmega328P

ICSP-разъём выполняет две полезные функции:

  1. Используется для передачи сигнальных пинов интерфейса SPI при подключении Arduino Shield’ов или других плат расширения. Линии ICSP-разъёма также продублированы на цифровых пинах , , и .
  2. Предназначен для загрузки прошивки в микроконтроллер через внешний программатор. Одна из таких прошивок — Bootloader для Arduino Uno, который позволяет .

А подробности распиновки .

Мигание светодиода после нажатия на кнопку

В предыдущем примере со светодиодами мы подключили кнопку к плате ардуино и поняли, как она работает. Светодиод включался и выключался, но делал это в совершенно пассивном режиме – сам контроллер здесь был абсолютно лишним, его можно было бы заменить батарейками. Поэтому давайте сделаем наш новый проект более «интеллектуальным»: при нажатии на кнопку заставим светодиод непрерывно мигать. Обычной схемой с лампочкой и выключателем этого уже не сделаешь – мы будем использовать мощь нашего микроконтроллера для решения этой пусть и простой, но не тривиальной задачи.

Полная схема проекта изображена на рисунке:

Фрагмент схемы со светодиодом уже хорошо нам знаком. Мы собрали обычный маячок со светодиодом и ограничительным резистором. А вот во второй части мы видим знакомую нам кнопку и еще один резистор. Пока не будем вдаваться в подробности, просто соберем схему и закачаем в ардуино простой скетч. Все элементы схемы  идут в самых простых стартовых наборах ардуино.

/*
  Скетч для схемы с использованием тактовой кнопки и светодиода
  Светодиод мигает, пока нажата кнопка.
  Кнопка подтянута к земле, нажатию соответствует HIGH на входе
*/

const int PIN_BUTTON = 2;
const int PIN_LED = 13;

void setup() {
  Serial.begin(9600);
  pinMode(PIN_LED, OUTPUT);
}

void loop() {
  // Получаем состояние кнопки
  int buttonState = digitalRead(PIN_BUTTON);
  Serial.println(buttonState);
  // Если кнопка не нажата, то ничего не делаем
  if (!buttonState) {
    delay(50);
    return;
  }

  // Этот блок кода будет выполняться, если кнопка нажата
  // Мигаем светодиодом
  digitalWrite(PIN_LED, HIGH);
  delay(1000);
  digitalWrite(PIN_LED, LOW);
  delay(1000);
}

Нажимаем и держим – светодиод мигает. Отпускаем – он гаснет. Именно то , что хотели. Хлопаем от радости в ладоши и приступаем к анализу того, что сделали.

Давайте посмотрим на скетч. В нем мы видим довольно простую логику.

  1. Определяем, нажата ли кнопка.
  2. Если кнопка не нажата, то просто выходим из метода loop, ничего не включая и не меняя.
  3. Если кнопка нажата, то выполняем мигание, используя фрагмент стандартного скетча:
    1. Включаем светодиод, подавая напряжение на нужный порт
    2. Делаем нужную паузу при включенном светодиоде
    3. Выключаем светодиод
    4. Делаем нужную паузу при выключенном светодиоде

Логика поведения кнопки в скетче может зависеть от способа подключения с подтягивающим резистором. Об этом мы поговорим в следующей статье.

Характеристики

  • Микроконтроллер: ATmega2560
  • Ядро: 8-битный AVR
  • Тактовая частота: 16 МГц
  • Объём Flash-памяти: 256 КБ (8 КБ занимает загрузчик)
  • Объём SRAM-памяти: 8 КБ
  • Объём EEPROM-памяти: 4 КБ
  • Портов ввода-вывода всего: 54
  • Портов с АЦП: 16
  • Разрядность АЦП: 10 бит
  • Портов с ШИМ: 15
  • Разрядность ШИМ: 8 бит
  • Аппаратных интерфейсов SPI: 1
  • Аппаратных интерфейсов I²C / TWI: 1
  • Аппаратных интерфейсов UART / Serial: 4
  • Номинальное рабочее напряжение: 5 В
  • Максимальный выходной ток пина 5V: 800 мA
  • Максимальный выходной ток пина 3V3: 150 мA
  • Максимальный ток с пина или на пин: 40 мА
  • Допустимое входное напряжение от внешнего источника: 7–12 В
  • Габариты: 101×53 мм

Описание analogRead

Принцип работы

Функция используется для считывания сигналов с аналоговых пинов платы arduino. На выходе мы получаем число, пропорциональное реальному значению входного напряжения (но не само напряжение). По своей сути, с помощью analogRead мы создаем вольтметр и можем использовать его показания для анализа информации с датчиков и выработки каких-либо действий.

Почему мы получаем некоторое абстрактное число, а не реальное значение напряжения? Все дело в том, что наша программа может запускаться на разных платах arduino с разными подключенными датчиками, с разными рабочими напряжениями. И мы бы должны изменять программу при каждом изменении типа платы или датчика, что крайне не удобно.

Почему функция возвращает значение от 0 до 1023? Все очень просто: аналогово-цифровой преобразователь, преобразующий значение напряжения в его цифровое значение, в ардуино имеет 10 разрядов, а 2 в 10 степени равно 1024. Таким образом, диапазон значений от 0 до 1023 дает нам 1024 варианта уровня сигнала. Мы просто сравниваем полученное число с границами диапазона и принимаем решение о том, что делать.

Преобразование значения с помощью функции map()

В арудино есть специальная функция, упрощающая преобразование диапазонов значений. Вы передаете ей значение и два диапазона (исходный и требуемый), а функция возвращает новое значение, которое будет также относиться к границам требуемого диапазона как и к границам исходного. Например, значение 5 в диапазоне от 0 до 10 преобразуется в значение 10 в диапазоне от 0 до 20. Значение 500 из диапазона от 0 до 1000 преобразуется в значение 5 из диапазона от 0 до 10.

Пример использования функции map совместно с функцией analogRead ():

int val = map(analogRead(A0), 0, 1023, 1, 10); //Вернет значение аналогового порта в диапазоне от 0 до 10. При этом 0 будет соответствовать 0, а 10 – 1023.

Пример использования analogRead с платой Arduino Uno

Рассмотрим простой пример работы с функцией analogRead. Мы присоединяем напрямую к ардуино потенциометр, подключив его к аналоговому порту A0. В скетче мы считываем значение и выводит его в монитор порта. Загрузите скетч в плату и откройте окно монитора последовательного порта. Вы увидите длинную вереницу чисел, выводящихся с помощью функции Serial.println().

void setup() {
Serial.begin(9600); // Инициализируем общение c компьютером на скорости 9600
}

void loop() {
// Считываем значение с аналогового порта
int sensorValue = analogRead(A0);
// Печатаем значение в мониторе порта
Serial.println(sensorValue);
// Небольшая задержка, чтобы бать ардуино слегка отдышаться
delay(1);
}

2 Управление светодиодом и пьезоизлучателемс помощью оператора delay()

Напишем вот такой скетч и загрузим его в Ардуино.

const int soundPin = 3; /* объявляем переменную с номером пина, 
                           на который подключён пьезоэлемент */
const int ledPin = 13;  // объявляем переменную с номером пина светодиода
                     
void setup() {
    pinMode(soundPin, OUTPUT); // объявляем пин 3 как выход.
    pinMode(ledPin, OUTPUT);   // объявляем пин 13 как выход.
}

void loop() {
    // Управление звуком:
    tone(soundPin, 700); // издаём звук на частоте 700 Гц
    delay(200);
    tone(soundPin, 500); // на частоте 500 Гц
    delay(200);
    tone(soundPin, 300); // на частоте 300 Гц
    delay(200);
    tone(soundPin, 200); // на частоте 200 Гц
    delay(200);
    
    // Управление светодиодом:
    digitalWrite(ledPin, HIGH); // зажигаем
    delay(200);
    digitalWrite(ledPin, LOW); // гасим
    delay(200);
}

После включения видно, что скетч выполняется не совсем так как нам нужно: пока полностью не отработает сирена, светодиод не мигнёт, а мы бы хотели, чтобы светодиод мигал во время звучания сирены. В чём же здесь проблема?

Дело в том, что обычным образом эту задачу не решить. Задачи выполняются микроконтроллером строго последовательно. Оператор delay() задерживает выполнение программы на указанный промежуток времени, и пока это время не истечёт, следующие команды программы не будут выполняться. Из-за этого мы не можем задать разную длительность выполнения для каждой задачи в цикле loop() программы. Поэтому нужно как-то сымитировать многозадачность.

Кнопка ардуино

Тактовые кнопки и кнопки-переключатели

Как обычно, начинаем раздел с простых вещей, интересных только начинающим. Если вы владеете азами  и хотите узнать о различных вариантах подключения кнопки к ардуино – можете пропустить этот параграф.

Что такое кнопка? По сути, это достаточно простое устройство, замыкающее и размыкающее электрическую сеть. Выполнять это замыкание/размыкание можно в разных режимах, при этому  фиксировать или не фиксировать свое положение. Соответственно, все кнопки можно поделить на две большие группы:

  • Кнопки переключатели с фиксацией. Они возвращаются в исходное состояние после того, как их отпустили. При в зависимости от начального состояния разделяют на нормально-замкнутые и нормально-разомкнутые кнопки.
  • Кнопки без фиксации (тактовые кнопки). Они фиксируются и остаются в том положении, в котором их оставили.

Вариантов различных кнопок великое множество, это действительно один из самых распространенных видов электронных компонентов.

Кнопки ардуино для простых проектов

В наших проектах мы будем работать с очень простыми тактовыми кнопками с 4 ножками, которые идут практически в любом наборе ардуино. Кнопка представляет собой переключатель с двумя парами контактов. Контакты в одной паре соединены между собой, поэтому больше одного выключателя в схеме реализовать не удастся, но вы можете одновременно управлять двумя параллельными сегментами, это бывает полезно.

В зависимости от ситуации, вы можете создавать как схемы с нормально замкнутыми, так и с нормально разомкнутыми контактами – для этого нужно будет только соответствующим образом выполнить соединение в схеме.

Для удобства работы в комплекте с тактовой кнопкой обычно идет пластмассовый колпачок какого-то цвета, он достаточно очевидно надевается на кнопку и придает проекту менее хакерский вид.

Описание и схема работы зуммера

Зуммер, пьезопищалка – все это названия одного устройства.  Данные модули используются для звукового оповещения в тех устройствах и системах, для функционирования которых в обязательном порядке нужен звуковой сигнал. Широко распространены зуммеры в различной бытовой технике и игрушках, использующих электронные платы. Пьезопищалки преобразуют команды, основанные на двухбитной системе счисления 1 и 0, в звуковые сигналы.


Пьезоэлемент “пищалка”

Пьезопищалка конструктивно представлена металлической пластиной с нанесенным на нее напылением из токопроводящей керамики. Пластина и напыление выступают в роли контактов. Устройство полярно, имеет свои «+» и «-». Принцип действия зуммера основан на открытом братьями Кюри в конце девятнадцатого века пьезоэлектрическом эффекте. Согласно ему, при подаче электричества на зуммер он начинает деформироваться. При этом происходят удары о металлическую пластинку, которая и производит “шум” нужной частоты.


Устройство пьезодинамика пищалки

Нужно также помнить, что зуммер бывает двух видов: активный и пассивный. Принцип действия у них одинаков, но в активном нет возможности менять частоту звучания, хотя сам звук громче и подключение проще. Подробнее об этом чуть ниже.


Модуль пищалки для Ардуино

Если сравнивать с обыкновенными электромагнитными преобразователями звука, то пьезопищалка имеет более простую конструкцию, что делает ее использование экономически обоснованным. Частота получаемого звука задается пользователем в программном обеспечении (пример скетча представим ниже).

Более точная работа аналогового входа

Для того чтобы добиться более точных показаний с аналогового входа можно использовать 2 варианта:

• Функция analogReference()​

Задает опорное напряжение относительно которого происходят аналоговые измерения. 

analogReference(type);

Возможные настройки (type):

DEFAULT: установлено по умолчанию. при данной конфигурации опорное напряжение автоматически принимается за напряжение питания платы Arduino. 5В (на платформах с напряжением питания 5 В) или за 3.3 В (на платформах с напряжением питания 3.3В)   

На платформах Arduino «из коробки» вывод AREF не задействован. В этом случае при настройке DEFAULT к выводу подключается внутреннее напряжение AVCC. Соединение является низко-импедансным и любое напряжение подведенное к выводу в этот момент может повредить микросхему ATmega.

INTERNAL: встроенное опорное напряжение 1.1В на микроконтроллерах ATmega168 и ATmega328, и 2.56В на ATmega8.

Это может пригодиться для более точного измерения напряжения лежащего в пределах ниже 1.1В либо 2.56В. Болле точная работа достигается за счет меньшего шага 5/1024 против 1.1/1024. Значения соответствующее или превышающее 1.1В (2.56В) будут конвертироваться АЦП в 1023. 

EXTERNAL: внешний источник опорного напряжения, подключенный к выводу AREF. 

После того как мы задали функцию, происходит отключение обоих внутренних источников. Теперь можно подключить внешнее напряжение, которое и будет являться опорным для АЦП. Внешнее напряжение рекомендуется подключать к выводу AREF через резистор 5 кОм.

• Ручная установка опорного напряжения

Актуальна для измерения крайне малого напряжения   

Искажения при работе с аналоговыми входами появляются по причине того, что по дефолту за опорное напряжение принимается 5В, в то время как стабилизаторы напряжения на плате Arduino могут немного отклоняться от эталонного значения и выдавать к примеру 4.85В.   4.85 / 1024 = 0.0047 (при эталонном шаге в 0.0049)

В случае, если под рукой имеется точный мультиметр, то можно попросту замерить питающее напряжение и вбить его в расчет, который рассматривался выше. 

 float Step = 4.85F / 1024; // Вычисляем шаг Uопорн / на градацию  

Пины коммуникации на плате Arduino

Назначение пинов SDA, SCL Arduino

Данные пины используются для приема/передачи информации по протоколу I2C. Например, при подключении жк дисплея с модулем I2C или GPS модуля. С помощью специальной библиотеки микроконтроллер может обмениваться информацией с подключенным периферийным устройством, поддерживающим данный протокол. На Ардуино Мега, в отличии от Уно и Нано, имеется целых три пары пинов SDA, SCL.

Назначение пинов TX, RX Arduino

Пины TX/RX также используются для коммуникации, но уже по протоколу UART. На платах Уно и Нано пины TX/RX подключены параллельно USB разъему для связи с компьютером. Поэтому, если вы подключите к данным портам устройство, например, блютуз модуль, то вы не сможете загрузить в Ардуино скетч, так как плата автоматически переключается на чтение данных с устройства, а не с компьютера.

Библиотека SPI Arduino

Для работы на Ардуино создана отдельная библиотека, которая реализует SPI. Перед началом кода нужно добавить #include <SPI.h>, чтобы включить библиотеку.

Основные функции:

  • begin() и end() – включение и выключение работы. При инициализации на выход настраиваются линии SCLK, MOSI и SS, подавая низкий уровень на SCLK, MOSI и высокий на SS. Функция end() не меняет уровни линий, она нужна для выключения блока, связанного с интерфейсом, на плате Ардуино.
  • setBitOrder(order) – установка порядка отправки битов информации (MSBFIRST – приоритет старшего бита, LSBFIRST – приоритет младшего бита).
  • setClockDivider(divider) – установка делителей тактов основной частоты. Можно поставить делители 2, 4, 8, 16, 32, 64 и 128. Записывается следующим образом – SPI_CLOCK_DIVn, где n – выбранный делитель.
  • setDataMode(mode) – выбор одного из четырех рабочих режимов.
  • transfer(value) – осуществление передачи байта от ведущего устройства и возвращение байта, который принят от ведомого устройства.
  • shiftIn(miso_pin, sclk_pin, bit_order) и shiftOut(mosi_pin, sclk_pin, order, value) – принятие и отправка данных, можно подключать к любым цифровым пинам, но перед этим нужно самостоятельно их настроить.

Прошивка и память Arduino v3 0 CH340G

Стандартный вариант платы Arduino Nano, работающий на микросхеме ATmega328P, можно прошить исключительно через программатор с SPI-интерфейсом.

При необходимости такую Nano-модель можно прошить и через SPI-интерфейс.

Чтобы загружать прошивки через mini-USB, потребуется:

  1. Подсоединить плату к ПК через USB. Система определит устройство как USB 2.0 SERIAL.
  2. Скачать и установить драйвер CH340G.

Как только драйвер будет установлен, система определит плату корректно и ее можно будет прошить через программатор. На плате загорится светодиод ON, а светодиод LED будет мигать.

Виды памяти

ATmega328P поддерживает 3 вида памяти:

  1. Flash. Она выступает в качестве постоянного запоминающего устройства.
  2. ОЗУ.
  3. EEPROM. Эта память также является постоянным запоминающим устройством, но ее можно перепрограммировать.

В микроконтроллере от Atmel 32 Кб Flash-памяти (свободно 30 Кб, т. к. 2 Кб занято загрузчиком), 2 Кб ОЗУ и 1 Кб EEPROM.

Фотографии разных версий платформы

Ниже представлены фотографии платформы разных версий и от разных производителей.
Многие задаются вопросом, чем китайская ардуино нано отличается от оригинала? Можем с уверенностью сказать, что основное отличие официальных платформ от сторонних заключается только в цене и упаковке товара.

  • Все
  • Официальная версия
  • Аналог на базе CH340G

Официальная версия

Официальная версия

Официальная версия

Китайский аналог Nano на базе CH340G

Китайский аналог Nano на базе CH340G

Китайский аналог Nano на базе CH340G

Существует-ли качественное отличие официальных плат от аналогов? Нет! Все платформы Arduino работают абсолютно одинаково, в соответствии с заявленными характеристиками.

Распиновка

Пины питания

  • VIN: Входной пин для подключения внешнего источника питания с напряжением в диапазоне от 7 до 12 вольт. Через контакт можно потреблять напряжение, когда устройство запитано через внешний разъём питания.
  • 5V: Выходной пин от регулятора напряжения на плате с выходом 5 вольт и максимальных током 800 мА. Питать устройство через вывод не рекомендуется — вы рискуете спалить плату.
  • 3.3V: Выходной пин от регулятора напряжения с выходом 3,3 вольта и максимальных током 150 мА. Питать устройство через вывод не рекомендуется — вы рискуете спалить плату.
  • GND: Выводы земли.
  • IOREF: Контакт предоставляет платам расширения информацию о рабочем напряжении микроконтроллера. В зависимости от напряжения, плата расширения может переключиться на соответствующий источник питания либо задействовать преобразователи уровней.

Порты ввода/вывода

  • Цифровые входы/выходы: пины –
    Логический уровень единицы — 5 В, нуля — 0 В. Максимальный ток выхода — 40 мА. К контактам подключены подтягивающие резисторы, которые по умолчанию выключены, но могут быть включены программно.
  • ШИМ: пины – и –
    Позволяет выводить аналоговые значения в виде ШИМ-сигнала. Разрядность ШИМ не меняется и установлена в 8 бит.
  • АЦП: пины –
    Позволяет представить аналоговое напряжение в цифровом виде. Разрядность АЦП не меняется и установлена в 10 бит. Диапазон входного напряжения от 0 до 5 В. При подаче большего напряжения — вы убьёте микроконтроллер.

Подключение SPI к Ардуино

Плата Arduino уже содержит специальные выводы  для подключения интерфейса SPI. Эти же выводы повторены в отельном разъеме ICSP. На этом разъеме отсутствует SS – изначально предусмотрено, что микроконтроллер Ардуино будет выступать в роли ведущего устройства. Если нужно использовать его в качестве ведомого, можно использовать любой цифровой вывод в качестве SS.

На данной иллюстрации представлен вариант подключения OLDE-экрана по SPI к ардуино.

Для каждой модели Ардуино существую свои выводы для SPI. Эти выводы:

  • Uno: MOSI соответствует вывод 11 или ICSP-4, MISO – 12 или ICSP-1, SCK – 13 или ICSP-3, SS (slave) – 10.
  • Mega1280 или Mega2560: MOSI – 51 или ICSP-4, MISO – 50 или ICSP-1, SCK – 52 или ICSP-3, SS (slave) – 53.
  • Leonardo: MOSI – ICSP-4, MISO –ICSP-1, SCK –ICSP-3.
  • Due: MOSI – ICSP-4, MISO –ICSP-1, SCK –ICSP-3, SS (master) – 4, 10, 52.

Последний контроллер Arduino Due расширяет возможности пользователя и позволяет реализовать больше задач, чем на остальных микроконтроллерах. Например, можно автоматически управлять ведомым устройством и автоматически выбирать различные конфигурации (тактовая частота, режим и другие).

Характеристики

  • Микроконтроллер: ATmega328P
  • Ядро: 8-битный AVR
  • Тактовая частота: 16 МГц
  • Flash-память: 32 КБ (2 КБ занимает загрузчик)
  • SRAM-память: 2 КБ
  • EEPROM-памяти: 1 КБ
  • Портов ввода-вывода всего: 20
  • Портов с АЦП: 8
  • Разрядность АЦП: 10 бит
  • Портов с ШИМ: 6
  • Разрядность ШИМ: 8 бит
  • Аппаратных интерфейсов SPI: 1
  • Аппаратных интерфейсов I²C / TWI: 1
  • Аппаратных интерфейсов UART / Serial: 1
  • Номинальное рабочее напряжение: 5 В
  • Максимальный выходной ток пина 5V: 800 мA
  • Максимальный выходной ток пина 3V3: 50 мA
  • Максимальный ток с пина или на пин: 40 мА
  • Допустимое входное напряжение от внешнего источника: 7–12 В
  • Габариты: 18×45 мм

2Пример подключения преобразователя логического уровня

Давайте посмотрим на практическом примере, как работает преобразователь уровня.

Для этого подключимся к какому-нибудь 3-вольтовому датчику, например, датчику температуры и влажности HTU21D. Этот датчик управляется по интерфейсу I2C, и ему необходим 3-вольтовый сигнал управления. В то же время Arduino генерирует 5-вольтовый сигнал. Тут нам и придёт на помощь преобразователь логического уровня. Соединим устройства по такой схеме:

Схема подключения датчика HTU21D к Arduino через преобразователь логического уровня

Для того чтобы использовать датчик, скачаем библиотеку HTU21D (она также приложена внизу статьи). Установим библиотеку как обычно. Загрузим пример SparkFun_HTU21D_Demo (File Examples SparkFun HTU21D humidity and temperature sensor breakout). В мониторе порта побегут измеренные значения температуры и влажности. Вживую это выглядит так:

Работа с датчиком HTU21D посредством Arduino и преобразователя

Сгорит ли датчик HTU21D, если его подключить напрямую к Arduino без преобразователя уровня? Вряд ли. Но он будет работать на повышенном напряжении, что сократит срок его службы на неопределённое время. Кроме того, датчик может греться, а значит, будет искажать показания и температуры, и влажности. Также возможны «глюки» в управлении. Поэтому лучше всё же подключать датчик HTU21D к Arduino через конвертер уровня. На крайний случай, если его нет, можно подключить линии SDA и SCL датчика через ограничительные резисторы сопротивлением ~330 Ом.

Более подробно о работе с сенсором HTU21D рассказывается в следующей статье.

Устройство и принцип работы потенциометра

Переменный резистор (потенциометр) поворотом ручки изменяет сопротивление в электрической цепи от нуля до номинального сопротивления в 10 кОм. Потенциометр сделан состоит из токопроводящей поверхности — плоского постоянного резистора с двумя контактами и скользящего по поверхности токосъемника. Потенциометр предназначен для точной регулировки напряжения в электрической цепи.


Со средней ножки потенциометра снимают значение напряжения

Переменный резистор имеет прочную токопроводящую поверхность, поскольку положение настройки потенциометра изменяется постоянно. Переменный резистор служит для регулярного применения, например, для изменения уровня громкости. Часто применяется в различных проектах Ардуино для начинающих.

Подстроечный резистор служит для точной настройки работы электронных устройств. Положение настройки, как правило, в течении всего срока эксплуатации устройства не изменяется. Поэтому, перемещение скользящего контакта производится с помощью отвертки, а прочность проводящего слоя не имеет большого значения.

Пример использования SPI Ардуино в проекте с датчиком давления

Для реализации проекта нам нужны Ардуино, датчик давления макетная плата и провода. Пример подключения датчика изображен на рисунке.

При помощи датчика SCP1000 возможно узнавать такие параметры как давление и температура и передать эти значения через SPI.

Основные элементы скетча программы

В первую очередь в коде прописываются регистры датчика при помощи setup(). С устройства возвращаются несколько значений – одно в 19 бит для полученного давления, другое в 16 бит – для температуры. После этого происходит считывание двух температурных байтов и считывание давления в два этапа. Сначала программа берет три старших бита, затем следующие 16 бит, после чего при помощи побитового сдвига происходит объединение этих двух значений в одно. Настоящее давление – это 19-тиразрядное значение, деленное на 4.

const int PRESSURE = 0x1F;      // первый этап определения давления (выявляются три старших бита)

const int PRESSURE_LSB = 0x20;  // второй этап, в котором определяются 16 бит для давления

const int TEMPERATURE = 0x21;   //16 бит для температуры

Для чтения данных температуры и преобразования ее в градусы Цельсия используется следующий элемент кода:

int tempData = readRegister(0x21, 2);

float realTemp = (float)tempData / 20.0; // чтобы определить реальное значение температуры в Цельсиях, нужно полученное число разделить на 20

Serial.print(“Temp

Наборы и конструкторы Ларт

ЛАРТ Сармат Армага

Набор на основе контроллера Ардуино, при помощи которого можно собрать робота, движущегося по линии. Главный компонент комплекта – миниатюрная плата Ардуино Нано, которая позволяет подключать не только входящие в состав набора компоненты, а и другие элементы совместимые с Ардуино, как механического, так и электронного типа. Это дает возможность совершенствовать полученного робота.

ЛАРТ Печенег Батана

Комплект включает плату Ардуино Нано и имеет достаточное количество элементов для разработки и строительства роботов, которых при помощи состава набора можно собрать две разновидности: робот, движущийся по черной линии и робот с датчиком ультразвука. Для программирования применяется текстовая среда Arduino IDE. Для разных модификаций роботов имеется возможность использования совместимых с Ардуино компонентов, а при помощи дополнительной пластины можно установить большее количество датчиков.

Выбрать и купить наборы ЛАРТ можно на официальном сайте: lartmaster.ru/

Конструктор Смарт Робо

Готовый конструктор для создания электронного робота на основе Ардуино, в комплект входит необходимое количество элементов, и руководство к сборке. Базовый элемент набора – плата от Keyestudio (100% аналог Ардуино). Полученный робот может быть запрограммирован на движение по линии, возможность объезда препятствий и управление от дистанционного пульта. Все элементы соединяются при помощи быстроразъемных соединителей и не требуют пайки. Доработать и усовершенствовать полученную конструкцию можно добавив на плату дополнительные элементы, совместимые с контроллером Ардуино.

Конструктор Смарт

Серия наборов, которые отличаются по комплектации. Основной компонент – плата Smart Uno – аналог контроллера Ардуино Уно, не уступающий ему по качественным характеристикам. В зависимости от комплектации (Смарт 10, Смарт 20 и Смарт 30) набор содержит элементы, как для начального уровня проектирования, так и для разработки более сложных проектов. При необходимости возможно подключение других электронных компонентов, совместимых с микроконтроллером.

Смарт Genuino

Серия наборов – Смарт 10 Genuino, Смарт 20 Genuino, Смарт 30 Genuino, которые отличны по количеству деталей в комплекте. Главный базовый компонент – плата Genuino Uno, кроме которой в составе имеются электронные детали, беспаечная макетная плата, провода и руководство по проектированию. Набор будет интересен как новичкам, так и профессиональным пользователям.

Выбрать и купить конструктор SmartElements можно на официальном сайте: https://smartelements.ru/

Робоплатформа Robbo (ScratchDuino)

Конструктор предназначен для обучения детей и взрослых основам робототехники и электроники. Управление роботизированным механизмом может осуществляться из различных сред программирования (Scratch, Lazarus, Кумир) или же пульта управления. Базовый компонент – картридж Ардуино. В зависимости от типа комплектации варьируется количество составных элементов.

Выбрать и купить конструктор Robbo можно на официальном сайте: https://robboclub.ru/

Элементы платы

Микроконтроллер ATmega328P

Сердцем платформы Arduino Nano является 8-битный микроконтроллер семейства AVR — ATmega328P с тактовой частотой 16 МГц. Контроллер предоставляет 32 КБ Flash-памяти для хранения прошивки, 2 КБ оперативной памяти SRAM и 1 КБ энергонезависимой памяти EEPROM для хранения данных.

Микросхема FT232R

Микросхема FTDI FT232R обеспечивает связь микроконтроллера ATmega328P с USB-портом компьютера. При подключении к компьютеру Nano определяется как виртуальный COM-порт.

USB-UART преобразователь общается с микроконтроллером ATmega328P по интерфейсу UART через пины и . Рекомендуем не использовать эти контакты в своём проекте.

Светодиодная индикация

Имя светодиода Назначение
RX и TXМигают при обмене данными между Arduino Nano и ПК.
LПользовательский светодиод подключённый к 13 пину микроконтроллера. При высоком уровне светодиод включается, при низком – выключается.
ONНаличие питания на Arduino Nano.

Регулятор напряжения 5 В

Линейный понижающий регулятор напряжения LM1117MPX-5.0 с выходом 5 вольт обеспечивает питание микроконтроллера ATmega328P и другой логики платформы. Максимальный выходной ток составляет 800 мА.

ICSP-разъём для ATmega328

ICSP-разъём предназначен для загрузки прошивки в микроконтроллер ATmega328 через программатор.

Также через контакты ICSP Nano общается с платами расширения по интерфейсу SPI.

Чем отличается аналоговый сигнал от цифрового

Аналоговый сигнал непрерывно изменяется во времени. Вся информация в природе аналоговая — волны на воде, колебание струны и т.д. Изначально человек записывал информацию (звуки, изображения, видео) с помощью аналоговых устройств. Но аналоговые сигналы чувствительны к воздействию шумов и помех.

Цифровой сигнал передается в виде единиц и нулей, для компьютеров и цифровой техники это проще реализовать (есть сигнал или нет сигнала). Для оперативной памяти в компьютерах используют конденсаторы, один заряженный конденсатор — 1 бит. На флеш-памяти используют транзисторы с плавающим затвором.

С появлением компьютеров аналоговые сигналы стали переводить в цифру, поскольку аналоговый сигнал подвержен искажениям и затуханию при передаче или записи. Наглядно продемонстрировать разницу между аналоговым и цифровым сигналом поможет картинка, где изображен процесс квантования — разбиение непрерывной величины на конечное число интервалов (перевод аналогового сигнала в цифру).

Квантование — разбиение непрерывной величины на интервалы

01.Basics | AnalogReadSerial (Чтение аналоговых выводов через потенциометр)

С помощью потенциометра мы можем менять напряжение и считывать данные с выводов.

Продолжим изучение работы с аналоговыми выводами через пример AnalogReadSerial из меню File | Examples | 01.Basics. Цель урока – плавно изменять напряжение и подавать его на аналоговый вывод, чтобы получить с него текущее значение напряжения.

Нам понадобятся плата Arduino, потенциометр и несколько проводов (или перемычек). Соединяем парные ножки с выводами на плате 5V и GND. Среднюю ножку необходимо соединить с аналоговым выводом на плате, помеченную как A0.

Не важно, какая из крайних ножек потенциометра будет подключена к 5V, а какая к GND, поменяется только направление, в котором нужно крутить ручку для изменения напряжения. Сам сигнал считывается со средней ножки, которая связана с аналоговым портом

Для считывания аналогового сигнала, принимающего широкий спектр значений, а не просто 0 или 1, подходят только порты, помеченные на плате как ANALOG IN. Они все пронумерованы с префиксом A (A0-A5).

Схема готова. Вращая регулятором потенциометра, мы можем менять сопротивление от 5 Вольт до 0. Arduino позволяет считывать текущее напряжение, которое подаётся на среднюю ножку при помощи аналогового вывода. Результаты могут колебаться от 0 до 1023.

Код

Код очень простой. При инициализации устанавливаем нужную скорость связи: Serial.begin(9600);. Далее в цикле мы постоянно считываем данные, поступающие с потенциометра при помощи метода analogRead(). Так как значения будут находиться в диапазоне от 0 до 1023, мы можем использовать тип int для переменной sensorValue.

Полученный результат будем выводить в окно последовательного монитора.

Проверка (Serial Monitor)

Запустите программу, а также откройте окно последовательного монитора. Вращая регулятором потенциометра, вы можете наблюдать, как в окне будут меняться значения от 0 до 1023.

Пример интересен своей универсальностью. Потенциометр является ручным делителем напряжения. Существуют другие детали, которые выполняют такую же работу. Например, фоторезистор меняет напряжение в зависимости от освещённости. Также напряжение может меняться от нажатия, от температуры и т.д. При этом нам не нужно менять программу, просто одну деталь меняем на другую и код будет выполняться. Единственное различие будет в выводимых результатах – каждый делитель напряжения имеет свои характеристики и, соответственно, будет давать свои показания.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий