Аминовая очистка газа от сероводорода: принцип, эффективные варианты и схемы установок  

Когда нужно применять фильтрацию?

Этот газ образуют сульфатредуцирующие бактерии, которые восстанавливают сульфаты и сульфиды.Благоприятные условия для их развития – места с острым дефицитом кислорода: глубокие колодцы, артезианские скважины.

Также сероводород синтезируется при разложении пирита и серного колчедана кислыми водами.

Бывают случаи, когда спустя несколько лет эксплуатации скважины/колодца в воде появляется неприятный запах сероводорода. Это значит, что герметичность осадочных труб нарушилась, и вода стала насыщаться ионами гидросульфитов и сульфитов, из которых образуется H2S.

В СанПиН 2.1.4.1074-01 указано, что максимальная концентрация сероводорода в питьевой воде – 0,003 мг/л, а для сульфидов этот показатель – 3 мг/л.

Чтобы определить точное содержание сероводорода в воде, нужно сдать ее на лабораторный анализ.

Чтоб получить наиболее точный результат, первую воду сливают в раковину в течение 10-15 минут, а потом набирают в чистую емкость. Проба должна быть доставлена в лабораторию не позже 2 часов с момента забора.

Неприятный запах и другие признаки повышенной концентрации примесей

Не всем доступен анализ воды. Если у вас такой возможности нет, ориентируйтесь на следующие признаки. Питьевую воду нужно очищать от сероводорода, если:

  • вы живете вблизи целлюлозно-бумажных комбинатов, предприятий нефтедобывающей промышленности, очистных сооружений;

  • вы берете воду из глубоких артезианских скважин или колодцев, где очень мало кислорода, и воды слабо перемешиваются;
  • колодец покрылся илом, осадочные трубы разгерметизировались;
  • в неглубокие колодцы попадают органические вещества, которые провоцируют гниение.

Обратите внимание! Сладкий привкус и запах тухлых яиц, который усиливается при нагревании воды, появляются при концентрации сероводорода 0,05-0,1 мг/л. При таких показателях воду уже нельзя пить. Желательно устанавливать фильтры на этапе, когда органолептические свойства воды еще не изменились, но это может случиться из-за предрасполагающих факторов (они перечислены в списке выше)

Желательно устанавливать фильтры на этапе, когда органолептические свойства воды еще не изменились, но это может случиться из-за предрасполагающих факторов (они перечислены в списке выше).

Выбор абсорбента для процесса очистки

Желаемыми характеристиками абсорбента являются:

  • необходимость удаления сероводорода H2S и других соединений серы.
  • поглощение углеводородов должно быть низким.
  • давление паров абсорбента должно быть низким, чтобы минимизировать потери абсорбента.
  • реакции между растворителем и кислыми газами должны быть обратимыми, чтобы предотвратить разложение абсорбента.
  • абсорбент должен быть термически стабильным.
  • удаление продуктов разложения должно быть простым.
  • поглощение кислого газа на единицу циркулирующего абсорбента должно быть высоким.
  • потребность в тепле для регенерации или удаления абсорбента должна быть низкой.
  • абсорбент должен быть неагрессивным.
  • абсорбент не должен пениться в абсорбере или десорбере.
  • желательно избирательное удаление кислых газов.
  • абсорбент должен быть дешевым и легкодоступным.

К сожалению, нет ни одного абсорбента, который обладает всеми желаемыми характеристиками. Это делает необходимым выбор абсорбента, который лучше всего подходит для обработки конкретной смеси кислых газов из различных доступных абсорбентов. Кислые смеси природного газа различаются по:

  • содержанию и соотношению H2S и CO2
  • содержанию тяжелых или ароматических соединений
  • содержанию COS, CS2 и меркаптанов

Хотя кислый газ в основном очищается абсорбентами, для слабо кислого газа может быть более экономичным использование абсорбентов-поглотителей или твердых агентов. В таких процессах соединение химически реагирует с H2S и расходуется в процессе очистки, требуя периодической замены очищающего компонента.

Четыре варианта очистки алконоламинами

Алконоламины или аминоспирты – это вещества, содержащие не только аминовую группу, но и гидроксигруппу.

Устройство установок и технологии очистки природного газа алканоламинами отличаются преимущественно способом подачи абсорбирующего вещества. Чаще всего в чистке газа с применением этого вида аминов используют четыре основных методики.

Первый способ. Предопределяет подачу активного раствора одним потоком сверху. Весь объем абсорбента направляется на верхнюю тарелку установки. Процесс очистки происходит при температурном фоне не выше 40ºС.

Простейший способ очистки предполагает подачу активного раствора одним потоком. Эта методика применяется, если примесей в газе незначительное количество

Эта методика обычно используется при незначительном загрязнении сероводородными соединениями и углекислотой. Суммарный тепловой эффект для получения товарного газа при этом, как правило, невысок.

Второй способ. Этот вариант очистки применяется при высоком содержании сероводородных соединений в газообразном топливе.

Реактивный раствор в этом случае подают в два потока. Первый, объемом примерно 65-75% общей массы, направляется в середину установки, второй поставляется сверху.

Аминовый раствор стекает вниз по тарелкам и встречается с восходящими газовыми потоками, которые нагнетаются на нижнюю тарелку абсорбирующей установки. Перед подачей раствор разогревается не более чем до 40ºС, но в ходе взаимодействия газа с амином температура значительно повышается.

Чтобы из-за повышения температуры не падала эффективность чистки, избыток тепла отводится вместе с отработанным раствором, насыщенным сероводородом. А вверху установки производится охлаждение потока с целью извлечения остатков кислых составляющих вместе с конденсатом.

Второй и третий из описанных способов предопределяет подачу абсорбирующего раствора двумя потоками. В первом случае реактив подают одной температуры, во втором – разной

Это экономичный способ, позволяющий сократить расход как энергии, так и активного раствора. Дополнительный подогрев не производится ни на одном этапе. По технологической сути он является двухуровневой очисткой, предоставляющей возможность с наименьшими потерями подготовить товарный газ к подаче в магистраль.

Третий способ. Предполагает поставку абсорбера в очищающую установку двумя потоками разной температуры. Методика применяется, если кроме сероводорода и углекислоты в сыром газе есть еще и CS2, и COS.

Преобладающая часть абсорбера, примерно 70-75%, разогревается до 60-70ºС, а оставшаяся доля только до 40ºС. Подаются потоки в абсорбер так же, как в вышеописанном случае: сверху и в середину.

Формирование зоны с высокой температурой дает возможность быстро и качественно извлечь органические загрязнения из газовой массы внизу очищающей колонны. А вверху диоксид углерода и сероводород осаждаются амином стандартной температуры.

Четвертый способ. Эта технология предопределяет подачу водного раствора амина двумя потоками с разной степенью регенерации. То есть один поставляется в неочищенном виде, с содержанием сероводородных включений, второй – без них.

Первый поток нельзя назвать полностью загрязненным. Он только частично содержит кислые компоненты, потому что часть из них удаляется в ходе охлаждения до +50º/+60ºС в теплообменнике. Этот поток раствора забирается с нижней насадки десорбера, охлаждается и направляется в среднюю часть колонны.

При значительном содержании сероводородных и углекислых компонентов в газообразном топливе очистку производят двумя потоками раствора с разной степенью регенерации

Глубокую очистку проходит только та часть раствора, которую нагнетают в верхний сектор установки. Температура этого потока обычно не превышает 50ºС. Здесь выполняется тонкая чистка газообразного топлива. Эта схема позволяет сократить расходы как минимум на 10 % за счет сокращения расхода пара.

Понятно, что способ очистки выбирают, исходя из наличия органических загрязнений и экономической целесообразности. В любом случае разнообразие технологий позволяет подобрать оптимальный вариант. На одной и той же установке аминовой обработки газа можно варьировать степень очистки, получая голубое горючее с нужными для работы газовых котлов, плит, обогревателей характеристиками.

Принципиальная схема установки, где происходит очистка попутного газа

Обозначения на схеме:

Г — гидравлический фильтр.

В — вентилятор (компрессор).

Р — реактор, фильтр химической сорбции сероводорода.

А — аэродинамический фильтр.

Фильтр гидравлической очистки газов от сероводорода

Применяется для очистки газов от механических примесей и взвешенных капель жидкостей. Также стабилизирует подачу газа перед дальнейшей очисткой или переработкой газа, и поддерживает избыточное давление газа на уровне 60 кПа.

Используется для очистки углеводородных газовых смесей, запылённого воздуха и прочих газов, слаборастворимых в воде.

Адаптирован для очистки метан содержащих газов: попутный нефтяной газ, биогаз, пиролизный газ и прочее.

Основные характеристики.

Производительность до 200 нм3/ч. Содержание механических примесей на входе 5 % масс. Содержание механических примесей на выходе менее 0,01% Энергозатраты 0 кВт. Конструкционные материалы. Нержавеющая сталь 18Х12Н10Т. Техническое обслуживание 1 раз в 3 месяца. Режим работы установки непрерывный.

Фильтр аэродинамической очистки газов.

Применяется для очистки газа от пересыщенных паров, жидкости (воды, сорбента), и осаждения механических примесей.

Применяется для очистки любых газовых смесей.

Фильтром аэродинамической очистки комплектуются все установки мокрой очистки газов, для осаждения паров используемого сорбента.

Можно использовать для очистки растворимых в воде газов и газов, взаимодействующих с водой.

Основные характеристики.

Производительность до 200 нм3/ч. Содержание механических примесей на входе 5 % масс. Содержание механических примесей на выходе менее 0,01% Энергозатраты 0 кВт. Конструкционные материалы. Нержавеющая сталь 18Х12Н10Т. Техническое обслуживание 1 раз в 3 месяца. Режим работы установки непрерывный.

Фильтр химической сорбции сероводорода.

Используется для очистки углеводородных газовых смесей от сероводорода.

Основные характеристики.

Производительность до 200 нм3/ч.

Содержание сероводорода на входе 5 % масс. Содержание сероводорода на выходе Менее 0,02% Энергозатраты 2 кВт/час. Конструкционные материалы. Нержавеющая сталь 18Х12Н10Т. Техническое обслуживание 1 раз в 3 месяца. Режим работы установки непрерывный. Масса в рабочем состоянии 400 кг. Персонал: 1 оператор по совместительству

Обслуживание.

Техническое обслуживание включает в себя: замену насадки колонных аппаратов, замена рабочих растворов, замена фильтров, проверка электротехнического оборудования.

Смену насадки колонных аппаратов необходимо производить через каждые 10 000 нм3 очищаемого газа.

Промышленное использование

На нефтеперерабатывающих заводах высокосернистый газ, который требуется удалить, обычно представляет собой H 2 S.. Обработка газа аминами составляет стадию обессеривания . Пары амина в сочетании с серой, которые выходят из регенератора, обычно обрабатываются в процессе Клауса , где они превращаются в чистую серу . Большая часть из 64 000 тонн чистой серы, произведенной во всем мире в 2005 году, является побочным продуктом этого процесса. Альтернативой процессу Клауса является процесс влажной сернистой кислоты  (fr), который восстанавливает серу в форме серной кислоты (H 2 SO 4) концентрированный. У некоторых растений регенератор связан с несколькими поглотителями.

При синтезе аммиака из природного газа, то газообразный водород в результате из углеводородного сырья , освобождаются от CO 2. который он содержит обработкой аминами.

Одно из приложений , которые могли бы быть разработаны является снижение выбросов парниковых газов , испускаемых тепловых электростанций , где лечение с аминами представляет собой подходящую технологию и альтернативой адсорбции методом инверсии давления .

Стали промышленность оценки, по тем же причинам, лечение его технологических газов с аминами или другим процессом. Так, японская компания Nippon Steel , а также ее корейский конкурент POSCO испытали очистку доменного газа , богатого CO 2., аминами. Эффективность, как и чистота, процессов прямого восстановления также может быть улучшена путем обработки их газа аминами. Однако в 2014 году только адсорбция с реверсивным давлением , процесс с аналогичной производительностью, работала в промышленных масштабах на нескольких установках прямого восстановления.

Промывка амином – одна из доступных технологий очистки биогаза до биометана .

Принцип действия типичной установки

Максимальной поглощающей способностью в отношении H2S характеризуется раствор моноэтаноламина. Однако у этого реагента есть пара существенных недостатков. Он отличается довольно высоким давлением и способностью во время работы установки аминовой очистки газа создавать необратимые соединения с сероокисью углерода.

Первый минус устраняется путем промывки, в результате которой пары амина частично поглощаются. Второй – редко встречается в ходе переработки промысловых газов.

Абсорбционная установка для извлечения сероводорода из газа

Комплекс очистных установок на магистрали

Усовершенствованные комплексы очистки газа

Трубопровод установки очистки природного газа

Концентрацию водного раствора моноэтаноламина подбирают опытным путем, на основании проведенных исследований принимают ее для очистки газа из определенного месторождения. В подборе процентного содержания реагента учитывается его способность противостоять агрессивному воздействию сероводорода на металлические компоненты системы.

Стандартное содержание абсорбирующего вещества обычно находится в интервале от 15 до 20%. Однако нередко бывает, что концентрацию увеличивают до 30% или уменьшают до 10% в зависимости от того, насколько высокой должна быть степень очистки. Т.е. с какой целью, в отоплении или в производстве полимерных соединений, будет использован газ.

Отметим, что при повышении концентрации соединений амина уменьшается коррозионная возможность сероводорода. Но надо учесть, что в этом случае увеличивается расход реагента. Следовательно, повышается стоимость очищенного товарного газа.

Главным агрегатом очистительной установки является абсорбер тарельчатой или насадной разновидности. Это вертикально ориентированный, внешне напоминающий пробирку, аппарат с расположенными внутри насадками или тарелками. В нижней его части есть вход для поставки неочищенной газовой смеси, вверху – выход в скруббер.

Если очищаемый газ в установки находится под давлением, достаточным для прохода реагента в теплообменник и затем в отгонную колонну, процесс происходит без участия насоса. Если давление маловато для течения процесса, отток стимулирует насосная техника

Поток газа после прохождения через входной сепаратор нагнетается в нижний раздел абсорбера. Затем он проходит через расположенные в середине корпуса тарелки или насадки, на которых оседают загрязняющие примеси. Насадки, полностью смоченные аминовым раствором, разделены между собой решетками для равномерного распределения реагента.

Далее очищенное от загрязнений голубое топливо направляется в скруббер. Это устройство может подключаться в схеме переработки после абсорбера или располагаться в верхней его части.

Отработанный же раствор стекает вниз по стенкам абсорбера и направляется в отгонную колонну – десорбер с кипятильником. Там раствор очищается от поглощенных загрязнений парами, выделяемыми при кипячении воды, чтобы вернуться обратно в установку.

Регенерированный, т.е. избавленный от сероводородных соединений, раствор перетекает в теплообменник. В нем жидкость охлаждается в процессе передачи тепла следующей порции загрязненного раствора, после чего нагнетается насосом в холодильник для полноценного охлаждения и конденсации пара.

Охлажденный абсорбирующий раствор снова подается в абсорбер. Так реагент циркулирует по установке. Его пары также охлаждаются и очищаются от кислых примесей, после чего пополняют запас реагента.

Чаще всего в очистке газа используются схемы с моноэтаноламином и диэтанолоамином. Указанные реагенты позволяют извлечь из состава голубого топлива не только сероводород, но и углекислоту

Если необходимо произвести одновременное удаление из обрабатываемого газа СО2 и H2S, производится двухступенчатая чистка. Она заключается в применении двух растворов, различающихся по концентрации. Этот вариант экономичней одноступенчатой чистки.

Сначала газообразное топливо чистят крепким составом с содержанием реагента 25-35%. Затем газ обрабатывается слабым водным раствором, в котором активного вещества всего 5-12%. В итоге выполняется и грубая, и тонкая очистка с минимальным расходом раствора и разумным применением выделяемого тепла.

Экономическая целесообразность

Выбранный процесс должен быть экономически эффективным в соответствии с различными спецификациями и требованиями. Во всем мире правила обычно ограничивают сжигание H2S.

Очистить газовые потоки, содержащие очень низкие концентрации H2S, можно разными способами, в зависимости от общих условий. Если поток кислого газа содержит более 30-45 кг серы в день в форме H2S в сырьевом, для очистки потока кислого газа обычно выбирают регенеративный химический абсорбент. Для кислого газа, имеющего очень низкое содержание H2S , обычно используется химический нейтрализатор. В таких случаях химическое вещество расходуется, и метод окончательного удаления отработанного химического вещества является предметом обсуждения.

Технические характеристики установки для очистки газов от сероводорода

  • Производительность, с которой выполняется очистка попутного газа: 20/100/200 нм3/ч
  • Исходная концентрация сероводорода (H2S) на входе: до 5% об.
  • Концентрация сероводорода на выходе после сероочистки: не более 0,01% об.
  • Энергопотребление в рабочем режиме: 3 кВт/ч
  • Возможная пиковая нагрузка до 5 кВт
  • Сопротивление установки 20 кПа.
  • Объём рабочего раствора рассчитан на 2 месяца работы
  • Срок службы установки 5 лет.
  • Масса: 1 450 кг.

Внешние габариты рамы:

Длина 6000 мм, Высота 2200 мм, ширина 2000 мм

+ёмкость раствора 10 м3 (3 Х 2 м) + Ёмкость приёма серы (2 Х 2 м)

Возможен монтаж в контейнер для установки и система вентиляции, при необходимости.

Амины

Концентрация амина в абсорбирующем водном растворе является важным параметром при разработке и функционировании процесса обработки аминного газа. В зависимости от того, для какого из следующих четырех аминов устройство было разработано, и для каких газов оно предназначено для удаления, это некоторые типичные концентрации амина, выраженные в процентах по массе чистого амина в водном растворе:

  • Моноэтаноламин: около 20% для удаления H2S и CO2и около 32% для удаления только CO2.
  • Диэтаноламин: от 20 до 25% для удаления H2S и CO2
  • Метилдиэтаноламин: от 30 до 55% для удаления H2S и CO2
  • Дигликоламин: около 50% для удаления H2S и CO2

Выбор концентрации амина в циркулирующем водном растворе зависит от ряда факторов и может быть совершенно произвольным. Обычно это делается просто на основе опыта. В число вовлеченных факторов входит то, обрабатывает ли аминовая установка сырые натуральный газ или же нефтеперерабатывающий завод побочные газы, содержащие относительно низкие концентрации как H2S и CO2 или обрабатывает ли установка газы с высоким содержанием CO2 такие как отходящие газы процесса парового риформинга, используемые в производство аммиака или дымовые газы из электростанции.

Оба H2S и CO2 являются кислыми газами и, следовательно, вызывают коррозию углеродистая сталь. Однако в установке обработки амином CO2 является более сильной кислотой из двух. ЧАС2S образует пленку сульфид железа на поверхности стали, которая защищает сталь. При обработке газов с высоким содержанием CO2часто используются ингибиторы коррозии, что позволяет использовать более высокие концентрации амина в циркулирующем растворе.

Еще одним фактором, влияющим на выбор концентрации амина, является относительная растворимость H2S и CO2 в выбранном амине. Выбор типа амина повлияет на требуемую скорость циркуляции раствора амина, энергозатраты на регенерацию и возможность выборочного удаления H2Только S или CO2 в одиночку при желании. Дополнительную информацию о выборе концентрации амина можно найти в книге Коля и Нильсена.

MEA и DEA

MEA и DEA – это первичные и вторичные амины. Они очень реакционны и могут эффективно удалять большой объем газа из-за высокой скорости реакции. Однако из-за стехиометрии емкость загрузки ограничена 0,5 моль CO.2 на моль амина. MEA и DEA также требуют большого количества энергии для удаления CO.2 во время регенерации, что может составлять до 70% общих эксплуатационных расходов. Они также более агрессивны и химически нестабильны по сравнению с другими аминами.

Использует

В частном случае промышленного синтеза аммиак, для паровой риформинг процесс углеводородов для производства газообразных водородОбработка амином является одним из обычно используемых процессов для удаления избытка диоксида углерода при окончательной очистке газообразного водорода.

в биогаз при производстве иногда необходимо удалить из биогаза двуокись углерода, чтобы сделать его сопоставимым с природным. Удаление иногда высокого содержания сероводорода необходимо для предотвращения коррозии металлических деталей после сжигания биогаза.

Улавливание и хранение углерода

Амины используются для удаления CO2 в различных областях, от добычи природного газа до пищевой промышленности и производства напитков, и существует уже более шестидесяти лет.

Существует несколько классификаций аминов, каждая из которых имеет разные характеристики, относящиеся к CO.2 захватывать. Например, моноэтаноламин (MEA) сильно реагирует с кислыми газами, такими как CO.2 и имеет быстрое время реакции и способность удалять высокий процент CO2, даже при низком уровне CO2 концентрации. Как правило, моноэтаноламин (МЭА) может улавливать от 85% до 90% CO.2 из дымовых газов угольной электростанции, который является одним из наиболее эффективных растворителей для улавливания CO2.

Проблемы улавливания углерода с использованием амина включают:

  • Газ под низким давлением увеличивает трудность переноса CO.2 из газа в амин
  • Содержание кислорода в газе может вызывать разложение амина и образование кислоты.
  • CO2 разложение первичных (и вторичных) аминов
  • Высокое потребление энергии
  • Очень большие помещения
  • Поиск подходящего места для удаленного СО2

Парциальное давление является движущей силой переноса CO2 в жидкую фазу. При низком давлении такой передачи трудно достичь без увеличения тепловой нагрузки ребойлера, что приведет к увеличению затрат.

Первичные и вторичные амины, например MEA и DEA, будут реагировать с CO.2 и образуют продукты разложения. О2 от входящего газа также вызовет деградацию. Разложившийся амин больше не может улавливать CO.2, что снижает общую эффективность улавливания углерода.

В настоящее время синтезируются и тестируются различные смеси аминов для достижения более желательного набора общих свойств для использования в CO.2 системы захвата. Одно из основных направлений деятельности – снижение энергии, необходимой для регенерации растворителя, что существенно влияет на стоимость процесса. Однако необходимо учитывать компромиссы. Например, энергия, необходимая для регенерации, обычно связана с движущими силами для достижения высокой улавливающей способности. Таким образом, уменьшение энергии регенерации может снизить движущую силу и тем самым увеличить количество растворителя и размер абсорбера, необходимые для захвата заданного количества CO.2, таким образом, увеличивая капитальные затраты.

Технологическая схема

Рис. 3 Принципиальная схема установки аминовой очистки

Газ подается в нижнюю часть колонны-абсорбера (1). Поднимаясь вверх по колонне, газ контактирует с раствором амина. В качестве контактных устройств применяются либо клапанные тарелки, либо неструктурированная насадка. Выбор типа контактного устройства определяется для каждого конкретного случая в отдельности. Количество теоретических ступеней контакта для типичного абсорбера – 7. Пройдя контактную часть абсорбера, газ поступает в секцию каплеуловителя. Назначение данной секции – максимально возможное снижение величины уноса раствора амина с потоком очищенного сырья. Далее, очищенный газ отводится за пределы установки. Колонна-абсорбер стандартно оборудована датчиками температуры для отслеживания изменения температуры по высоте аппарата.

Раствор амина по сигналу автоматического контроллера уровня отводится из нижней части колонны посредством автоматического клапана. При снижении давления из раствора амина выделяются фракции легкокипящих углеводородов. Разделение образовавшейся смеси происходит в сепараторе (2). Выделившийся в процессе сепарации газ отводится из верхней части аппарата в факельную систему сжигания «кислых» газов или в блок термической деструкции.

После сепарации раствор амина проходит механическую очистку в последовательно расположенных мешотчатом (3) и угольном (4) фильтрах.

Далее, очищенный от механических примесей раствор насыщенного амина поступает в теплообменник (5), где происходит нагрев за счет теплообмена с потоком регенерированного амина из ребойлера (7).

Из теплообменника (5) раствор амина подается в колонну-десорбер (6). Подвод тепла, необходимого для процесса регенерации, происходит в ребойлере (7). Источником тепла может быть как прямой подогреватель (газовая горелка, термоэлектрический нагреватель), так и косвенный (пар или горячее масло). АВО рефлюкса (8) обеспечивает частичную конденсацию паров из колонны-десорбера, формируя тем самым поток рефлюкса.

Регенерированный амин отводится из переливной секции ребойлера (7) и подается в теплообменник (5) для нагрева потока насыщенного амина, после чего подпорным насосом подается в секцию АВО амина (12).

Охлажденный регенерированный амин подается в колонну-абсорбер нагнетательным насосом (13).

Это интересно: Манометры для измерения давления газа: обзор видов измерителей, их устройство и принцип действия

Процесс очистки: польза и вред

Каждое из месторождений характеризуется своими параметрами сероводородных соединений. Извлеченные на поверхность земли, компоненты вредят окружающей среде. Высокая концентрация серы замедляет (или делает невозможным) выполнение следующих этапов переработки и транспортировки газа.

Сероводородные соединения:

  • ядовиты для человеческого организма;
  • разъедают газоперерабатывающего оборудования и стенки трубопроводов;
  • препятствуют работе катализаторов, которые используются при синтезе газа.

Согласно нормативам, в магистрали доля тиоловой серы не должна превышать 16 мг/м3, сероводорода – 7 мг/м3. Перед отправкой потребителю природное сырье очищают от серосодержащих соединений.

Широкое использование извлеченных серосодержащих добавок повышает рентабельность добычи. Кислые компоненты используют:

  • при изготовлении сухого льда для заведений общественного питания;
  • на предприятиях химической промышленности для получения углекислого газа, серной кислоты;
  • как удобрение – при обработке земли и уходе за растениями.

Негативные эффекты сероводорода и необходимость очистки газовоздушных сред от H2S

Сернистый водород – одно из простых и широко распространенных соединений, которое в небольших количествах встречается повсеместно. Велика роль эндогенного сероводорода в живых организмах, где он выполняет множество важных нейробиологических функций. Используется он и в лечебных ваннах, в микроскопических объемах благотворно влияя на организм человека.

Впрочем, когда речь идет о такой технологической процедуре как мокрая или сухая очистка воздуха от сероводорода, ясно – что высокая концентрация данного соединения несет лишь сугубо негативные последствия для здоровья, жизни и экологии планеты.

Последствия кислотных дождей, содержащих сернистые компоненты

В значительных объемах чистый сероводород и его производные образуются на гидрометаллургических фабриках, предприятиях органического синтеза, аграрных и химических заводах – при производстве серной кислоты, серы, селитры, серосодержащих удобрений.

В составе дымовых газов H2S – постоянный спутник всех без исключения выбросов от сгорания органического сырья – наряду с оксидами серы, окислами азота, соляной кислотой, фенолами, монооксидом углерода.

Очистка биогаза от сероводорода и углекислого газа – одна из насущных проблем, стоящих перед операторами промышленных биометановых электростанций.

Выполненный проект: внедрение системы утилизации сероводорода на гидрометаллургическом предприятии

В опасной концентрации запах газообразного дигидросульфида – тошнотворный «аромат» гниющего мяса или стухших яиц – практически мгновенно перестает ощущаться. Это таит огромную опасность, поскольку H2S быстро парализует обонятельные нервы, и человек продолжает вдыхать из воздуха вредное соединение, уже не ощущая его запаха.

Установки очистки газа от сероводорода востребованы также и в силу его разрушительного воздействия на технические коммуникации. Индивидуально или в составе дымов, сульфид водорода и другие сернистые соединения вызывают сильнейшую коррозию трубопроводов, резервуаров, фитингов, компрессоров и любого другого оборудования, не обладающего специальной антикоррозийной защитой.

Помимо этого, сернистый водород пожаро- и взрывоопасен: 4%-ое его присутствие в воздушной среде может вызвать катастрофические последствия. Так, 27 ноября 2018 года на химическом заводе в восточном Китае, (провинция Хэбэй), по крайней мере, 23 человека погибли и более 22 получили тяжелые ранения в результате самопроизвольного взрыва H2S.

Двойной удар вызывает сероводород, присутствующий в отходящих дымовых газах. С одной стороны, на пути следования по тракту он негативно воздействует на коммуникационные, технические и выхлопные системы предприятий, с другой – выбрасывается в атмосферу, после чего может трансформироваться (через окисление) в серную кислоту и выпадать в виде кислотных дождей, опасность которых для экологии сложно преувеличить.

Симптомы отравления дигидросульфидом

Это интересно: Как работает термоодеяло для газовых баллонов: устройство, назначение и рекомендации по выбору

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий