3 способа передачи энергии без проводов — от Теслы до наших дней.

Получаем энергию с катушками и без них

Мы пытаемся удалить энергию эфира двумя способами. Сначала трансформатор работает автономно, без дополнительных катушек. Слева — напряжение потребления, справа — ток. Напряжение около 11 вольт, сила тока 1,8. Теперь соединяем две одинаковые катушки. Трубки для снятия вставляются в их середину. На их выходе горят лампочки. Те, которые используются в холодильнике на 220 вольт, 15 ватт. Катушки наматываются так же, как и качер. Все концы луковиц уйдут в землю. Посмотрим, как меняются параметры.

7. Информация об измерении частоты на плате. Как это произошло? Включен во вторичную обмотку. Он пошел от катушки, прошел феррит, затем намотал на кольцо 3 витка обычного провода и выводы пошли на осциллограф. Я положил начало этому. Предел составляет 1 микросекунду. Предел напряжения 1 вольт. Мы смотрим.

Базовые элементы электрогенерирующей установки

Установка из двух частей: раскачивающая и и принимающая. Первый элемент это трансформатор тесла, который работает на микросхеме IR2153. Качер будет работать на частоте 230 килогерц, оперироваться с помощью микросхемы с частотой 23 килогерца. На выходе будут стоять 2 полевых транзистора. Катушка намотана медным проводом 0,35 миллиметра. 950 витков. Почти все детали есть. Единственная загвоздка в питании. В следующем видео вы сможете посмотреть, какой получился прибор. Продаются готовые качеры в этом китайском магазине.

Другая часть схемы сложнее. Она выйдет дороже. Используются редкие ферриты. Но игра стоит свеч. Схема полностью расходятся с привычными понятиями физики и электроники.

История развития

Развитие дистанционной беспроводной передачи электроэнергии связано с достижениями радиотехники, поскольку оба процесса имеют одинаковую природу. Изобретения в обеих областях связаны с исследованием метода электромагнитной индукции и ее влияния на генерацию электрического тока.

Утром 1820 года Ампер открыл закон взаимодействия токов, который заключался в том, что если ток течет в одном направлении по двум близко расположенным проводникам, то они притягиваются друг к другу, а если в разных — отталкиваются.

М. Фарадей в 1831 году установил в процессе проведения экспериментов, что переменное магнитное поле (которое со временем меняет размер и направление), создаваемое протеканием электрического тока, индуцирует (индуцирует) токи в соседних проводниках. У тех есть беспроводная передача электроэнергии. Мы подробно рассмотрели закон Фарадея в предыдущей статье.

Итак, Дж. К. Максвелл через 33 года, в 1864 году, перевел экспериментальные данные Фарадея в математическую форму, те же уравнения Максвелла являются фундаментальными в электродинамике. Они описывают, как связаны электрический ток и электромагнитное поле.

Существование электромагнитных волн было подтверждено в 1888 г. Г. Герцем в ходе его экспериментов с искровым излучателем с переключателем на катушке Румкорфа. Таким образом создавались электромагнитные волны с частотой до половины гигагерца. Стоит отметить, что эти волны могли быть приняты несколькими приемниками, но они должны быть настроены в резонанс с передатчиком. Дальность действия завода была порядка 3 метров. Когда в передатчике возникла искра, такая же искра возникла в приемниках. Фактически, это первые эксперименты по беспроводной передаче электроэнергии.

Известный ученый Никола Тесла провел обширные исследования. Он изучал переменный ток высокого напряжения и частоты в 1891 году. В результате были сделаны следующие выводы:

Для каждой конкретной цели установка должна быть настроена на соответствующую частоту и напряжение. В этом случае высокая частота не является обязательным условием. Наилучшие результаты были получены при частоте 15-20 кГц и напряжении передатчика 20 кВ. Колебательный разряд конденсатора использовался для получения тока высокой частоты и напряжения. Таким образом, можно передавать как электричество, так и производить свет.

Во время своих выступлений и лекций ученый демонстрировал свечение ламп (электронных ламп) под действием высокочастотного электростатического поля. Фактически, основные выводы Теслы заключались в том, что даже в случае использования резонансных систем невозможно передать много энергии с помощью электромагнитной волны.

Параллельно подобными исследованиями до 1897 года занимались ряд ученых: Джагдиш Боче в Индии, Александр Попов в России и Гульельмо Маркони в Италии.

Каждый из них внес свой вклад в развитие беспроводной передачи энергии:

  1. Дж. Бош в 1894 году зажег порох, передавая электричество на расстояние без проводов. Он сделал это во время демонстрации в Калькутте.
  2. А. Попов 25 апреля (7 мая) 1895 г с помощью азбуки Морзе передал первое сообщение. В России сегодня, 7 мая, по-прежнему День радио.
  3. В 1896 г. Г. Маркони в Великобритании также передал радиосигнал (азбука Морзе) на расстояние 1,5 км, а затем и 3 км над равниной Солсбери.

Стоит отметить, что работы Теслы, недооцененные в свое время и утерянные на века, по параметрам и мощности превзошли работы его современников. В то же время, именно в 1896 году его устройства передавали сигнал на большие расстояния (48 км), но, к сожалению, это было небольшое количество электричества.

И в 1899 году Тесла пришел к выводу:

Несостоятельность индукционного метода кажется огромной по сравнению с методом возбуждения заряда земли и воздуха.

Этот вывод приведет к другим исследованиям: в 1900 году ему удалось запитать лампу от катушки, проведенной в полевых условиях, а в 1903 году была запущена башня Вандерклифф на Лонг-Айленде. Он состоял из трансформатора с заземленной вторичной обмоткой и сферического медного купола наверху. С его помощью оказалось, что зажгли 200 ламп по 50 ватт. При этом передатчик находился в 40 км от него. К сожалению, эти исследования были остановлены, финансирование приостановлено, а бесплатная беспроводная передача электроэнергии оказалась экономически невыгодной для деловых людей. Башня была разрушена в 1917 году.

Многофазная система электроснабжения

Тесла обратил внимание, что электрические станции постоянного тока Эдисона неэффективны, а Эдисон уже застроил ими всё Атлантическое побережье США. Чтобы преодолеть недостатки постоянного тока, надо было, по идее Теслы, использовать переменный ток

Многофазной такая система называется потому, что двигатели и генераторы имеют несколько фаз (см. пояснения выше).

Лампа Эдисона

Лампы Эдисона были слабыми и неэффективными при использовании постоянного тока. Вся эта система имела один большой недостаток в том, что она не могла транспортировать электричество на расстояние более 3 км из-за неспособности изменять напряжение до высокого уровня, необходимого для передачи на большие расстояния. Поэтому электростанции постоянного тока устанавливались с интервалом в 3 км.

Схема работы многофазных систем электроснабжения

Переменный ток, как писалось выше, мог достигать больших напряжений и поэтому его можно было передавать на огромные расстояния (выйдите из дома и посмотрите на ближайшие высоковольтные линии электропередач, это оно самое).

Когда Эдисон узнал, что у него появился столь мощный конкурент, он понял, что может потерять свою империю постоянного тока. Именно так и началась война между Вестингауза вместе с Теслой против Эдисона, которую назовут войной токов. Эдисон начал усиленно пытаться дискредитировать изобретение Теслы, показывая, что переменный ток более опасен для жизни, чем постоянный.

Эдисон бил переменным током животных на публике, чтобы привести их в ярость и доказать, что этот вид тока опасен. Однажды Эдисон узнал об идее одного врача, об использовании переменного тока для умерщвления людей. Реализация не застала себя ждать. Так был изобретён электрический стул, который впервые применили к Уильяму Кеммлеру, виновному в убийстве своей любовницы.

Эдисон долго не мог придумать для своего нового изобретения название, но ему больше всего нравилось слово «увестингаузить», правда ни один из них, как мы теперь видим, не прижился.

Тесла тоже не сидел без дела и отвечал на все попытки дискредитации Эдисона. Он стремился наоборот показать, что переменный ток не опасен и показывал это, при помощи скин-эффекта.

Австралийский любитель электрического эксгибиционизма Питер Террен бьёт себя в течение 15 секунд током в 200 000 вольт при помощи катушки Тесла, демонстрируя скин-эффект.

Как мы знаем, Тесла и Вестингауз в конечном итоге победили, поэтому переменный ток стал повсеместным явлением. Понадобилась целая экономическая и юридическая война, чтобы обеспечить Америку и весь мир более прогрессивным изобретением.

Что это такое бестопливный генератор

Это несложное устройство создано для генерации электроэнергии без использования различных видов топлива. Работает по принципу неодимовых магнитов. В простом двигателе магнитное поле создается электрическими катушками, обычно из меди или алюминия. Эти двигатели постоянно нуждаются в электропитании для создания магнитного поля. Потери энергии колоссальны. Но бестопливный генератор не содержит катушек из таких материалов. Следовательно, потери будут минимальными. Он использует постоянное магнитное поле для создания необходимой силы для перемещения двигателя.

Чтобы найти альтернативные способы генерации электроэнергии, существует ряд альтернатив из нетрадиционных источников энергии, которые также являются возобновляемыми. Одной из таких альтернатив является выработка электроэнергии из бестопливного двигателя в изолированной системе выработки электроэнергии с низкими затратами на техническое обслуживание.

Бестопливный двигатель (как и генератор) – это двигатель, который вырабатывает электроэнергию круглосуточно без топлива (бензин, дизель, масло, газ, солнце). Приводным механизмом является двигатель постоянного тока, который приводится в действие аккумулятором (12 В или более). Батарея приводит в движение электродвигатель постоянного тока, который в свою очередь вращает генератор переменного тока для выработки электроэнергии и в то же время с помощью диода заряжает батарею.

К числу источников энергии, которые могут работать без углекислого газа, относятся ветер, волны или прилив фотоэлектрической и осмотической энергии. Но бестопливные генераторы электроэнергии по-прежнему являются наиболее надежными источниками энергии с низкими эксплуатационными расходами, которые даже в некоторых случаях превосходят солнечные батареи.

Использование недорогих традиционных источников энергии, таких как топливо, будет оставаться основным источником энергии до следующих десятилетий, несмотря на их неблагоприятное воздействие на окружающую среду.

Применение бестопливного двигателя (или генератора) для выработки электроэнергии ограничено мощностью двигателя постоянного тока и генератора переменного тока. Это подразумевает, что наличие двигателя постоянного тока и генератора большой мощности дает бестопливному двигателю свои возможности. Исследования показали, что потенциал бестопливного двигателя во всем мире более чем в пять раз превышает потенциал ветра и солнца, потому что он работает 24/7, ежедневно, в любой точке планеты.

Способы передачи электроэнергии

Определение качества электроэнергии анализаторами

Наиболее распространены два способа передачи электроэнергии: с помощью воздушных и кабельных линий. Они отличаются между собой по дальности и среде, в которой находится проводник.

Воздушные линии – это, упрощённо, медные или алюминиевые проводники, подвешенные через изоляторы на металлические или железобетонные опоры. При таком методе возможна передача электричества на большие расстояния и между разными государствами.

Кабельная линия – прокладка проводов под землёй. Отдельные токоведущие жилы расположены, как правило, в резиновой или ПВХ изоляции. Если напряжение высокое, то имеется и броня из металлической ленты. Также она служит в качестве экрана для защиты от помех. Встречается преимущественно в пределах города или предприятия.


Прокладка кабелей

Дополнительная информация. Применяя кабельные линии, возможно транспортировать электроэнергию по дну водоёмов и даже морей. Это позволяет поставлять электричество на острова. Применение ЛЭП таких возможностей не подразумевает.

ЛЭП

Тут стоит рассказать о том, какие сети используются для передачи электроэнергии. От электростанции до конечного потребителя электричество проходит не только через повышающий трансформатор и высоковольтные линии. Если посмотреть на современный город с высоты, можно заметить целый клубок проводов, образующий единую сеть.

Чтобы попасть к потребителю, с высоковольтных линий ток заново поступает в трансформатор, но на этот раз напряжение понижается. После чего он подается на распределительную сеть и расходится на промышленные предприятия, которые имеют свою подстанцию для получения нужного им напряжения, на городские подстанции, которые расформировывают электричество по магистральным кабелям и на районные подстанции.

Вам это будет интересно Щупы для мультиметра

Городская подстанция

От районных подстанций через линии электропередач электричество подается в частные, многоквартирные дома и объекты инфраструктуры. В спальных микрорайонах кабеля от подстанций в основном прокладывают под землей, откуда они выходят уже на щиток подъезда, который дальше распределяет ток на каждую розетку и лампочку в доме.

Силовой ящик многоэтажки

Примеры транспортировки энергии по воздуху

Рассмотренная выше проблема может быть решена путем выбора альтернативного варианта распределения энергии, который мог бы обеспечить гораздо более высокую эффективность, низкую стоимость передачи и избежать хищения энергии. Передача энергии микроволновым излучением является одной из перспективных технологий и может стать достойной альтернативой.

Беспроводной передачей энергии занимался еще Никола Тесла, который показал, что он действительно “отец беспроводной связи”. Никола Тесла первым задумал идею беспроводной передачи энергии и еще в 1891 году продемонстрировал “передачу электрической энергии без проводов», которая зависела от электропроводности.
В 1893 году Тесла продемонстрировал освещение вакуумных ламп без использования проводов для передачи электроэнергии на Всемирной Колумбийской экспозиции в Чикаго. Башня Уорденклиффа была спроектирована и построена Теслой главным образом для беспроводной передачи электроэнергии, а не телеграфии.

  • В 1904 году дирижабль с двигателем 0,1 лошадиной силы приводился в движение путем передачи мощности через пространство с расстояния не менее 30 метров.
  • В 1961 году была опубликована первая статья, предлагающая микроволновую энергию для передачи энергии, а в 1964 году продемонстрирована модель вертолета с микроволновым питанием, которая получала всю мощность, необходимую для полета от микроволнового луча на частоте 2,45 ГГц из диапазона частот 2,4-2,5 ГГц, который зарезервирован для промышленных, научных и медицинских приложений.
  • Эксперименты по передаче энергии микроволновым излучением без проводов в диапазоне десятков киловатт были проведены в Калифорнии в 1975 году и на острове Реюньон (Индийский океан) в 1997 году.
  • Аналогичным образом, первый в мире самолет без топлива, работающий на микроволновой энергии с земли, был зарегистрирован в 1987 году в Канаде.
  • В 2003 году Центр летных исследований НАСА продемонстрировал модель самолета с лазерным питанием в помещении.
  • В 2004 году Япония предложила беспроводную зарядку электромобилей с помощью микроволновой передачи энергии. Новая компания представила технологию беспроводной передачи энергии на выставке потребительской электроники 2007 года.
  • Исследовательская группа физиков также продемонстрировала беспроводное питание лампочки мощностью 60 Вт с эффективностью 40% на расстоянии 2 м с использованием двух катушек диаметром 60 см.
  • Сейчас уже серийно выпускается беспроводная зарядка для смартфонов и других устройств.
  •  Электромобиль Тесла и другие современные авто уже имеет встроенную беспроводную зарядку для смартфонов и не горами зарядка самого электромобиля.

Концепция беспроводной передачи энергии микроволновым излучением поясняется функциональной блок-схемой. На передающей стороне источник питания преобразует энергию в микроволны которые контролируются электронными управляемыми схемами. Передающая антенна излучает мощность равномерно через свободное пространство к антенне. На приемной стороне антенна принимает передаваемую мощность и преобразует микроволновую мощность в мощность постоянного тока. Передача осуществляется на частоте 2,45 ГГц или 5,8 ГГц. Другие варианты частот — 8,5 ГГц, 10 ГГц и 35 ГГц.

Самая высокая эффективность около 90% достигнута на частоте 2.45 ГГц.

Технология беспроводной передачи электроэнергии

Беспроводная передача электрической энергии (WPT) позволяет подавать питание через воздушный зазор без необходимости использования электрических проводов. Беспроводная передача электроэнергии может обеспечить питание от источника переменного тока для совместимых аккумуляторов или устройств без физических разъемов и проводов. Беспроводная передача электрической энергии может обеспечить заряд мобильных телефонов и планшетных компьютеров, беспилотных летательных аппаратов, автомобилей и прочего транспортного оборудования. Она может даже сделать возможной беспроводную передачу в космосе электроэнергии, полученной от солнечных панелей.

Беспроводная передача электрической энергии начала свое быстрое развитие в области бытовой электроники, заменяя проводные зарядные устройства. На выставке CES 2017 будет показано множество устройств, использующих беспроводную передачу электроэнергии.

Однако концепция передачи электрической энергии бес проводов возникла примерно в 1890-х годах. Никола Тесла в своей лаборатории в Колорадо Спрингс мог без проводов зажечь электрическую лампочку, используя электродинамическую индукцию (используемой в резонансном трансформаторе).

Изображение из патента Теслы на «устройство для передачи электрической энергии», 1907 год

Были зажжены три лампочки, размещенные на расстоянии 60 футов (18 метров) от источника питания, и демонстрация была задокументирована. У Теслы были большие планы, он надеялся, что его башня Ворденклиф, расположенная на Лонг-Айленд, будет без проводов передавать электрическую энергию через Атлантический океан. Этого никогда не произошло из-за различных проблем, в том числе, и с финансированием и сроками.

Беспроводная передача электрической энергии использует поля, создаваемые заряженными частицами, для переноса энергии через воздушный зазор между передатчиками и приемниками. Воздушный зазор закорачивается с помощью преобразования электрической энергии в форму, которая может передаваться по воздуху. Электрическая энергия преобразуется в переменное поле, передается по воздуху, и затем с помощью приемника преобразуется в пригодный для использования электрический ток. В зависимости от мощности и расстояния, электрическая энергия может эффективно передаваться через электрическое поле, магнитное поле или электромагнитные волны, такие как радиоволны, СВЧ излучение или даже свет.

В следующей таблице перечислены различные технологии беспроводной передачи электрической энергии, а также формы передачи энергии.

Технологии беспроводной передачи электрической энергии (WPT)ТехнологияПереносчик электрической энергииЧто позволяет передавать электрическую энергию

Индуктивная связьМагнитные поляВитки провода
Резонансная индуктивная связьМагнитные поляКолебательные контуры
Емкостная связьЭлектрические поляПары проводящих пластин
Магнитодинамическая связьМагнитные поляВращение постоянных магнитов
СВЧ излучениеВолны СВЧФазированные ряды параболических антенн
Оптическое излучениеВидимый свет / инфракрасное излучение / ультрафиолетовое излучениеЛазеры, фотоэлементы

Реальные проекты в наши дни

За все последние годы, согласно вышеприведенным технологиям, ученые пытались и пытаются реализовать всего два проекта.

Первый из них начинался очень обнадеживающе. В 2000-х годах на о.Реюньон, возникла потребность в постоянной передаче 10кВт мощности на расстояние в 1км.

Горный рельеф и местная растительность, не позволяли проложить там ни воздушные линии электропередач, ни кабельные.

Все перемещения на острове в эту точку осуществлялось исключительно на вертолетах.

Для решения проблемы в одну команду были собраны лучшие умы из разных стран. В том числе и ранее упоминавшиеся в статье, наши ученые из МГУ В.Ванке и В.Савин.

Однако в момент, когда должны были приступать к практической реализации и строительству передатчиков и приемников энергии, проект заморозили и остановили. А с началом кризиса в 2008 году и вовсе забросили.

На самом деле это очень обидно, так как теоретическая работа там была проделана колоссальная и достойная реализации.

Второй проект, выглядит более безумным чем первый. Однако на него выделяются реальные средства. Сама идея была высказана еще в 1968г физиком из США П.Глэйзером.

Он предложил на тот момент не совсем нормальную идею — вывести на геостационарную орбиту в 36000 км над землей огромный спутник. На нем расположить солнечные панели, которые будут собирать бесплатную энергию солнца.

Затем все это должно преобразовываться в пучок СВЧ волн и передаваться на землю.

Этакая «звезда смерти» в наших земных реалиях.

На земле пучок нужно поймать гигантскими антеннами и преобразовать в электричество.

Насколько огромны должны быть эти антенны? Представьте, что если спутник будет в диаметре 1км, то на земле приемник должен быть в 5 раз больше — 5км (размер Садового кольца).

Но размеры это всего лишь малая часть проблем. После всех расчетов оказалось, что такой спутник вырабатывал бы электричество мощностью в 5ГВт. При достижении земли оставалось бы всего 2ГВт. К примеру Красноярская ГЭС дает 6ГВт.

Поэтому его идею рассмотрели, посчитали и отложили в сторонку, так как все изначально упиралось в цену. Стоимость космического проекта в те времена вылезла за 1трлн.$.

Но наука к счастью не стоит на месте. Технологии совершенствуются и дешевеют. Сейчас разработку такой солнечной космической станции уже ведут несколько стран. Хотя в начале двадцатого века для беспроводной передачи электроэнергии хватало всего одного гениального человека.

Советуем изучить Группа по электробезопасности 3 группа

Общая цена проекта упала от изначальной до 25млрд.$. Остается вопрос — увидим ли мы в ближайшее время его реализацию?

К сожалению никто вам четкого ответа не даст. Ставки делают только на вторую половину нынешнего столетия. Поэтому пока давайте довольствоваться беспроводными зарядками для смартфонов и надеяться что ученым удастся повысить их КПД. Ну или в конце концов на Земле родится второй Никола Тесла.

Экскурс в историю

Изобретение трансформатора в 1896 году принадлежит именно тому самому Николе Тесла. Основная активность изобретателя пришлась на конец IX — начало XX века. Приоритетными направлениями, которыми он занимался, были физика и инженерия. Он опережал своё время на столетия, даже современные учёные поражаются тем высотам, которых смог достичь изобретатель. Тесла мог превратить ночь над Нью-Йорком в день, у людей от этого вставали волосы дыбом, а из-под лошадиных подков вылетали метровые искры.

Путь, который он выбрал для себя, был полон трудностей, связанных в основном с постоянным​ поиском инвесторов. Те, в свою очередь, не желали вкладывать в его «сумасшедшие» идеи деньги. Немногие, решившиеся на финансирование его изобретений, в итоге либо пытались присвоить себе право собственности на его изобретения, либо прекращали финансирование. Влиятельным промышленникам того времени, таким как Рокфеллер, не было на руку, чтобы электричество стало бесплатным.

Одним из последних проектов, который проводил Тесла, было строительство огромной башни «Уорденклифф». В основу этой работы легла ранее изобретённая им катушка. Основным назначением этого объекта была передача электричества через океан — на другой континент такой же башне. При этом обе башни должны были работать в одинаковом резонансе. Но этот эксперимент был обречён на крах. Финансирование проекта прекратилось и Тесла снова ударился в поиски денег для построения своих детищ.

Ученый умер в 1943 году на 87-м году жизни при загадочных обстоятельствах в одном из номеров Нью-йоркского отеля. В последний год жизни он сильно болел и практически не выходил из отеля.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий

Adblock
detector