В случае когда токи текут в противоположных направлениях проводники

1 вариант

1. Как взаимодействуют два параллельных проводника, если электрический ток в них протекает в одном направ­лении?

А. Сила взаимодействия равна нулю.
Б. Проводники притягиваются.
В. Проводники отталкиваются.

2. С какой силой взаимодействует каждый метр длины двух параллельных проводников бесконечной длины и ничтожно малого сечения, расположенных на расстоя­нии 1 м один от другого в вакууме, если сила тока в про­водниках равна 2 А?

А. 8 ⋅ 10-7 Н
Б. 10-7 Н
В. 2 ⋅ 10-7 Н

3. Контур АВСD находится в однород­ном магнитном поле (рис. 31), линии индукции которого направлены перпен­дикулярно плоскости чертежа от нас.

Магнитный поток через контур будет менять­ся, если контур…

А. движется в однородном магнитном поле в плоскости рисунка влево;
Б. движется в плоскости рисунка вверх;
В. поворачивается вокруг стороны АВ.

4. Два электрона движутся на расстоянии r друг от дру­га, как показано на рисунке 32. Сравните силу их взаи­модействия при движении с силой их взаимодействия в покое на том же расстоянии друг от друга.

А. Сила взаимодействия электронов при движении больше.
Б. Сила взаимодействия электронов при движении меньше.
В. Силы в обоих случаях равны.

5. Рамку, площадь которой равна 0,5 м2, пронизывают линии индукции магнитного поля под углом 30° к плос­кости рамки. Чему равен магнитный поток, пронизываю­щий рамку, если индукция магнитного поля 4 Тл?

А. 1 Вб
Б. 2 Вб
В. 4 Вб

Проводники и диэлектрики

Некоторые делят мир на черное и белое, а мы — на проводники и диэлектрики.

  • Проводники — это материалы, которые проводят электрический ток. Самыми лучшими проводниками являются металлы.
  • Диэлектрики — материалы, которые не проводят электрический ток. Изи!

Проводники

Диэлектрики

Медь, железо, алюминий, олово, свинец, золото, серебро, хром, никель, вольфрам

Воздух, дистиллированная вода, поливинилхлорид, янтарь, стекло, резина, полиэтилен, полипропилен, полиамид, сухое дерево, каучук

То, что диэлектрик не проводит электрический ток, не значит, что он не может накапливать заряд. Накопление заряда не зависит от возможности его передавать.

Электрическая цепь и ее схематическое изображение

ОпределениеЭлектрическая цепь — это совокупность устройств, соединенных определенным образом, которые обеспечивают путь для протекания электрического тока.

Основные элементы электрической цепи:

  • Источник тока (генератор, гальванический элемент, батарея, аккумулятор).
  • Потребители тока (лампы, нагревательные элементы и прочие электроприборы).
  • Проводники — части цепи, обладающие достаточным запасом свободных электронов, способных перемещаться под действием внешнего электрического поля. Проводники соединяют источники и потребители тока в единую цепь.
  • Ключ (переключатель, выключатель) для замыкания и размыкания цепи.

Электрическая цепь также может содержать:

  • резистор — элемент электрической цепи, обладающий некоторым сопротивлением;
  • реостат — устройство для регулировки силы тока и напряжения в электрической цепи путём получения требуемой величины сопротивления;
  • конденсатор — устройство, способное накапливать электрический заряд и передавать его другим элементам цепи;
  • измерительные приборы — устройства, предназначенные для измерения параметров электрической цепи.

ОпределениеЭлектрическая схема — графическое изображение электрической цепи, в котором реальные элементы представлены в виде условных обозначений.

Условные обозначения некоторых элементов электрической цепи

Простейшая электрическая цепь содержит в себе источник и потребитель тока, проводники, ключ. Схематически ее можно отобразить так:

Электромагнитная индукция

Возникновение электрического тока в замкнутом проводнике (замкнутой цепи) возможно при помощи обратного преобразования из магнитного потока в электрический. Это явление называется электромагнитной индукцией. Возникновение электрического тока в замкнутой цепи возможно только при условии воздействия на проводник в замкнутой цепи переменного/изменяющего магнитного поля. Такие изменения магнитного потока можно представить изменением числа магнитных линий, которые пронизывают контур с током (например катушку). Самый простой случай возникновения электромагнитной индукции в проводнике — это физическое движение/перемещение магнита относительно замкнутого проводника, в котором регистрируется электрический ток во время такого движения магнита. Если рассматривать явление электромагнитной индукции тока на примере классической катушки с намотанным на неё проводником, то полученный таким образом индукционный ток в следствие движения магнита внутри катушки будет зависеть от:

  • Количества витков катушки
  • Скорости изменения магнитного потока
  • Свойств и типа (материала) самого магнита

Интересная и важная особенность, сопровождающая явление электромагнитной индукции тока: когда магнит движется в катушке с проводником, то в зависимости от направления движения будет изменяться и направление течения тока в проводнике. Величина выработанного тока в случае электромагнитной индукции зависит от свойств магнитного поля. Поскольку электрический ток появляется в результате действия электрического поля, то в случае электромагнитной индукции происходит процесс образования электрического поля из магнитного с помощью магнитного потока.

Магнитный поток отвечает за количество направленных магнитных линий, проходящих через ограниченную площадь или контур. Величина обозначается символом Sl (1 вебер ). Величина магнитного потока определяется количеством магнитных линий в нём. Магнитный поток всегда характеризует весь магнит целиком, а не какое-то его отдельное проявление в определённой точке, магнитный поток можно считать энергетическим потенциалом отдельно взятого магнита.
Магнитный поток и впоследствии вырабатываемый в результате электромагнитной индукции ток зависит от некоторых закономерностей:

  • Магнитный поток прямо пропорционален интенсивности магнитной индукции.

    (где Sl — магнитный поток (1 вебер ), B — магнитная индукция (1 Тесла ))

  • Магнитный поток прямо пропорционален площади поверхности, через которую проходят линии магнитной индукции.

    (где Sl — магнитный поток (1 вебер ), S — площадь поверхности)

  • Воздействие магнитного потока зависит от угла расположения площади поверхности/контура по отношению к источнику магнитного поля.

  • Сила полученного в результате электромагнитной индукции тока напрямую зависит от скорости изменения магнитного потока.

    (где I — сила тока (1 ампер ), Sl — изменяемый магнитный поток (1 вебер ), t — время изменения магнитного потока (1 секунда (с)))

«Электромагнитная индукция»

Электромагнитная индукция — это явление, которое заключается в возникновении электрического тока в замкнутом проводнике в результате изменения магнитного поля, в котором он находится. Это явление открыл английский физик М. Фарадей в 1831 г. Суть его можно пояснить несколькими простыми опытами.

Описанный в опытах Фарадея принцип получения переменного тока используется в индукционных генераторах, вырабатывающих электрическую энергию на тепловых или гидроэлектростанциях. Сопротивление вращению ротора генератора, возникающее при взаимодействии индукционного тока с магнитным полем, преодолевается за счет работы паровой или гидротурбины, вращающей ротор. Такие генераторы преобразуют механическую энергию в энергию электрического тока.

Вихревые токи, или токи Фуко

Если массивный проводник поместить в переменное магнитное поле, то в этом проводнике благодаря явлению электромагнитной индукции возникают вихревые индукционные токи, называемые токами Фуко.

Вихревые токи возникают также при движении массивного проводника в постоянном, но неоднородном в пространстве магнитном поле. Токи Фуко имеют такое направление, что действующая на них в магнитном поле сила тормозит движение проводника. Маятник в виде сплошной металлической пластинки из немагнитного материала, совершающий колебания между полюсами электромагнита, резко останавливается при включении магнитного поля.

Во многих случаях нагревание, вызываемое токами Фуко, оказывается вредным, и с ним приходится бороться. Сердечники трансформаторов, роторы электродвигателей набирают из отдельных железных пластин, разделенных слоями изолятора, препятствующего развитию больших индукционных токов, а сами пластины изготовляют из сплавов, имеющих высокое удельное сопротивление.

Электромагнитное поле

Электрическое поле, созданное неподвижными зарядами, является статическим и действует на заряды. Постоянный ток вызывает появление постоянного во времени магнитного поля, действующего на движущиеся заряды и токи. Электрическое и магнитное поля существуют в этом случае независимо друг от друга.

Явление электромагнитной индукции демонстрирует взаимодействие этих полей, наблюдаемое в веществах, в которых есть свободные заряды, т. е. в проводниках. Переменное магнитное поле создает переменное электрическое поле, которое, действуя на свободные заряды, создает электрический ток. Этот ток, будучи переменным, в свою очередь порождает переменное магнитное поле, создающее электрическое поле в том же проводнике, и т. д.

Совокупность переменного электрического и переменного магнитного полей, порождающих друг друга, называется электромагнитным полем. Оно может существовать и в среде, где нет свободных зарядов, и распространяется в пространстве в виде электромагнитной волны.

Классическая электродинамика — одно из высших достижений человеческого разума. Она оказала огромное влияние на последующее развитие человеческой цивилизации, предсказав существование электромагнитных волн. Это привело в дальнейшем к созданию радио, телевидения, телекоммуникационных систем, спутниковых средств навигации, а также компьютеров, промышленных и бытовых роботов и прочих атрибутов современной жизни.

Краеугольным камнем теории Максвелла явилось утверждение, что источником магнитного поля может служить одно только переменное электрическое поле, подобно тому, как источником электрического поля, создающим в проводнике индукционный ток, служит переменное магнитное поле. Наличие проводника при этом не обязательно — электрическое поле возникает и в пустом пространстве. Линии переменного электрического поля, аналогично линиям магнитного поля, замкнуты. Электрическое и магнитное поля электромагнитной волны равноправны.

Электромагнитная индукция в схемах и таблицах

(Явление электромагнитной индукции, опыты Фарадея, правило Ленца, закон электромагнитной индукции, вихревое электрическое поле, самоиндукция, индуктивность, энергия магнитного поля тока)

Дополнительные материалы по теме:

Конспект урока по физике в 11 классе «Электромагнитная индукция».

Следующая тема: «».

Явление самоиндукции

Ханс Кристиан Эрстед открыл существование магнитного поля вокруг проводника или катушки с током. Также ученый установил, что характеристики этого поля прямым образом связаны с силой тока и его направлением. Если ток в катушке или проводнике будет переменным, то он породит магнитное поле, которое не будет стационарным, то есть будет меняться. В свою очередь это переменное поле приведет к возникновению индуцированного тока (явление электромагнитной индукции). Движение тока индукции будет всегда противоположно циркулирующему по проводнику переменному току, то есть будет оказывать сопротивление при каждом изменении направления тока в проводнике или катушке. Этот процесс получил название самоиндукции. Создаваемая при этом разность электрических потенциалов называется ЭДС самоиндукции.

Отметим, что явление самоиндукции возникает не только при изменении направления тока, но и при любом его изменении, например, при увеличении за счет уменьшения сопротивления в цепи.

Для физического описания сопротивления, оказываемого любому изменению тока в цепи за счет самоиндукции, ввели понятие индуктивности, которая измеряется в генри (в честь американского физика Джозефа Генри). Один генри — это такая индуктивность, для которой при изменении тока за 1 секунду на 1 ампер возникает ЭДС в процессе самоиндукции, равная 1 вольт.

Направление электрического тока

Свободные электроны.. Электрический ток.. Измерение тока.. Амперметр.. Единица силы тока — Ампер.. Направление электрического тока.. Направление движения электронов..

  • Когда электрическое поле прикладывается к проводнику, свободные электроны (носители отрицательного заряда) начинают дрейфовать в соответствии с направлением электрического поля – возникает электрический ток.
  • Движение электронов означает движение отрицательных зарядов, следовательно, – электрический ток является мерой количества электрического заряда, переносимого через поперечное сечение проводника за единицу времени.
  • Измерение тока
  • Единица силы тока Кулон в секунду в системе СИ имеет конкретное название Ампер (А) – в честь знаменитого французского ученого Андре-Мари Ампера (на фото в заголовке статьи).

В международной системе СИ единица измерения заряда – Кулон, а единица времени – секунда. Поэтому единица силы тока – Кулон в секунду (Кл/сек).

Как мы знаем, величина отрицательного электрического заряда электрона -1,602 • 10-19 Кулона. Поэтому один Кулон электрического заряда состоит из 1 / 1,602 • 10-19 = 6,24 • 1018 электронов. Следовательно, если 6,24 • 1018 электронов пересекает поперечное сечение проводника за одну секунду, то величина такого тока равна одному амперу.

Для измерения силы тока существует измерительный прибор — амперметр.

Рис. 1

Амперметр включается в электрическую цепь (рис. 1) последовательно с тем элементом цепи, силу тока в котором необходимо измерить. При подключении амперметра нужно соблюдать полярность: «плюс» амперметра подключается к «плюсу» источника тока, а «минус» амперметра — к «минусу» источника тока.

Направление электрического тока

Если в электрической цепи, показанной на рис. 1 замкнуть контакты выключателя, то по этой цепи потечет электрический ток. Возникает вопрос: «А в каком направлении?»

Мы знаем, что электрическим током в металлических проводниках называется упорядоченное движение отрицательно заряженных частиц – электронов (в других средах это могут быть ионы или ионы и электроны).

Отрицательно заряженные электроны во внешней цепи двигаются от минуса источника к плюсу (одноименные заряды отталкиваются, противоположные — притягиваются), что хорошо иллюстрирует рис.

2.

Рис. 2 Учебник физики за 8 класс дает нам другой ответ: «За направление электрического тока в цепи принято направление движения положительных зарядов», — то есть от плюса источника энергии к минусу источника.

Выбор направления тока, противоположного истинному, иначе как парадоксальным назвать нельзя, но объяснить причины такого несоответствия можно, если проследить историю развития электротехники.

Дело в том, что электрические заряды стали изучать задолго до того, как были открыты электроны, поэтому природа носителей заряда в металлах была еще неизвестна.

Понятие о положительном и отрицательном заряде ввёл американский ученый и политический деятель Бенджамин Франклин.

В своей работе «Опыты и наблюдения над электричеством» (1747 г.) Франклин предпринял попытку теоретически объяснить электрические явления. Именно он первым высказал важнейшее предположение об атомарной, «зернистой» природе электричества: «Электрическая материя состоит из частичек, которые должны быть чрезвычайно мелкими».

Франклин полагал, что тело, которое накапливает электричество, заряжается положительно, а тело, теряющее электричество, заряжается отрицательно. При их соединении избыточный положительный заряд перетекает туда, где его недостает, то есть к отрицательно заряженному телу (по аналогии с сообщающими сосудами).

Эти представления о движении положительных зарядов широко распространились в научных кругах и вошли в учебники физики. Так и получилось, что действительное направление движения электронов в проводнике противоположно принятому направлению электрического тока.

После открытия электрона ученые решили оставить все как есть, поскольку пришлось бы очень многое изменять (и не только в учебниках), если указывать истинное направление тока. Также это связано и с тем, что знак заряда практически ни на что не влияет, пока все используют одно и то же соглашение.

Виды токов: постоянные и переменные

В зависимости от изменения направления протекания заряженных частиц, различают следующие виды токов:

  • Постоянный – формируется движением заряженных частиц в одном направлении. Его основные характеристики (сила тока, напряжение) имеют постоянные значения и не изменяются во времени;
  • Переменный – направление перемещения зарядов при таком виде движения заряженных частиц периодически меняется. Количество изменений направления движения за единицу времени, равную одной секунде, называется частотой тока и измеряется в Герцах. Так, например, значение данной характеристики в обычной бытовой электрической цепи равно 50 Гц. Это означает, что в течение 1 секунды движущиеся по цепи электроны меняют свое направление 50 раз, вызывая тем самым такое же количество изменений напряжения в фазном проводе от 220 до 0 В.

Основные характеристики переменного тока

Магнитный поток. Работа перемещения проводника

с током в магнитном поле

Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина

, (1)

при , 1 Вб = 1 Тлм 2 , (2)

где — единичный вектор нормали к поверхности,— угол между направлением вектораи направлением нормали к поверхности. В системе СИ единица измерения магнитного потокаВебер (Вб).

Работа по перемещению проводника с током в магнитном поле

,

, (3)

т.е. работа по перемещению проводника с током в магнитном поле равна произ­ведению силы тока на магнитный поток, пересеченный движущимся проводником.

32. Явление электромагнитной индукции. ЭДС индукции.

Закон Фарадея. Правило Ленца. Практическая значимость

явления электромагнитной индукции

Явление электромагнитной индукции заключается в том, что в замкнутом проводящем контуре при изменении потока магнитной индукции, охватываемого этим контуром, возникает индукционный электрический ток.

Явление возбуждения тока с помощью магнитного поля открыто Фарадеем в 1831 году. «Магнетизм превратить в электричество» — такова была основная цель, к которой стремился Фарадей в течение 10 лет (1821-1831 г.г.), веривший в эту идею. Главный вывод, который он сделал: электрический ток возникает при движении катушки и магнита относительно друг друга. Вскоре после этого Фарадей создал первый генератор электрического тока. Индукционный ток в опытах Фарадея возникал при изменения магнитного потока.

(1)

Всякий раз при изменении полного магнитного потока через произвольный контур в контуре возникает электродвижущая сила, называемая электродвижущей силой индукции:

, (2)

Индукционный ток в контуре всегда имеет такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызвавшего этот индукционный ток.

Структура металлов

На предыдущих уроках мы изучили практически все понятия, связанные с возникновением электрического тока: электрические заряды, электрическое поле, источники тока, простейшие электрические цепи и электрические схемы. Теперь нам предстоит выяснить, как течёт электрический ток в металлах, какие действия оказывает электрический ток, а также направление тока.

Металлы, как мы выяснили из экспериментов на предыдущих уроках, хорошо проводят электрический ток. Для того чтобы пояснить этот факт, зададимся вопросом: а что же такое металлы?

Металлы, как правило, – это поликристаллические вещества (состоящие из множества кристаллов) (Рис. 1, 2).

Рис. 1. Металлы (

)

Рис. 2. Структура железа ()

Закон Ампера для проводника произвольной формы

Если проводник с током находится в магнитном поле, то на каждый носитель тока действует сила равная:

где $\overrightarrow{v}$ — скорость теплового движения зарядов, $\overrightarrow{u}$ — скорость упорядоченного их движения. От заряда, это действие передается проводнику, по которому заряд перемещается. Значит, на проводник с током, который находится в магнитном, поле действует сила.

Выберем элемент проводника с током длины $dl$. Найдем силу ($\overrightarrow{dF}$) с которой действует магнитное поле на выделенный элемент. Усредним выражение (2) по носителям тока, которые находятся в элементе:

где $\overrightarrow{B}$ — вектор магнитной индукции в точке размещения элемента $dl$. Если n — концентрация носителей тока в единице объема, S — площадь поперечного сечения провода в данном месте, тогда N — число движущихся зарядов в элементе $dl$, равное:

Умножим (3) на количество носителей тока, получим:

Зная, что:

где $\overrightarrow{j}$- вектор плотности тока, а $Sdl=dV$, можно записать:

Из (7) следует, что сила, действующая на единицу объема проводника равна, плотность силы ($f$):

Формулу (7) можно записать в виде:

где $\overrightarrow{j}Sd\overrightarrow{l}=Id\overrightarrow{l}.$

Формула (9) закон Ампера для проводника произвольной формы. Модуль силы Ампера из (9) очевидно равен:

где $\alpha $ — угол между векторами $\overrightarrow{dl}$ и $\overrightarrow{B}$. Сила Ампера направлена перпендикулярно плоскости, в которой лежат векторы $\overrightarrow{dl}$ и $\overrightarrow{B}$. Силу, которая действует на провод конечной длины можно найти из (10) путем интегрирования по длине проводника:

Силы, которые действуют на проводники с токами, называют силами Ампера.

Направление силы Ампера определяется правилом левой руки (Левую руку надо расположить так, чтобы линии поля входили в ладонь, четыре пальца были направлены по току, тогда отогнутый на 900 большой палец укажет направление силы Ампера).

Пример 1

Задание: Прямой проводник массой m длиной l подвешен горизонтально на двух легких нитях в однородном магнитном поле, вектор индукции этого поля имеет горизонтальное направление перпендикулярное проводнику (рис.1). Найдите силу тока и его направление, который разорвет одну из нитей подвеса. Индукция поля B. Каждая нить разорвется при нагрузке N.

Для решения задачи изобразим силы, которые действуют на проводник (рис.2). Будем считать проводник однородным, тогда можно считать, что точка приложения всех сил – середина проводника. Для того, чтобы сила Ампера была направлена вниз, ток должен течь в направлении из точки А в точку В (рис.2) (На рис.1 магнитное поле изображено, направленным на нас, перпендикулярно плоскости рисунка).

В таком случае уравнение равновесия сил, приложенных к проводнику с током запишем как:

\

где $\overrightarrow{mg}$ — сила тяжести, $\overrightarrow{F_A}$ — сила Ампера, $\overrightarrow{N}$ — реакция нити (их две).

Спроектируем (1.1) на ось X, получим:

Модуль силы Ампера для прямого конечного проводника с током равен:

где $\alpha =0$ — угол между векторами магнитной индукции и направлением течения тока.

Подставим (1.3) в (1.2) выразим силу тока, получим:

Ответ: $I=\frac{2N-mg}{Bl}.$ Из точки А и точку В.

Пример 2

Задание: По проводнику в виде половины кольца радиуса R течет постоянный ток силы I. Проводник находится в однородном магнитном поле, индукция которого равна B, поле перпендикулярно плоскости, в которой лежит проводник. Найдите силу Ампера. Провода, которые подводят ток вне поля.

Пусть проводник находится в плоскости рисунка (рис.3), тогда линии поля перпендикулярны плоскости рисунка (от нас). Выделим на полукольце бесконечно малый элемент тока dl.

На элемент тока действует сила Ампера равная:

\\ \left(2.1\right).\]

Направление силы определяется по правилу левой руки. Выберем координатные оси (рис.3). Тогда элемент силы можно записать через его проекции (${dF}_x,{dF}_y$) как:

где $\overrightarrow{i}$ и $\overrightarrow{j}$ — единичные орты. Тогда силу, которая действует на проводник, найдем как интеграл по длине провода L:

\

Из-за симметрии интеграл $\int\limits_L{dF_x}=0.$ Тогда

\

Рассмотрев рис.3 запишем, что:

\

где по закону Ампера для элемента тока запишем, что

По условию $\overrightarrow{dl}\bot \overrightarrow{B}$. Выразим длину дуги dl через радиус R угол $\alpha $, получим:

\

Проведем интегрирование (2.4) при $-\frac{\pi }{2}\le \alpha \le \frac{\pi }{2}\ $подставив (2.8), получим:

\

Ответ: $\overrightarrow{F}=2IBR\overrightarrow{j}.$

ток течет от плюса к минусу или наоборот?

На самом деле — НАВСТРЕЧУ ДРУГ-ДРУГУ!

«Когда Ампер предложил в первой половине 19-го столетия направление тока от плюса к минусу, все восприняли это как должное и это решение никто не стал оспаривать. Прошло 70 лет, пока люди не выяснили, что ток в металлах происходит благодаря движениям электронов. А когда они это поняли (это случилось в 1916 году), все настолько привыкли к сделанному Ампером выбору, что уже не стали ничего менять.

. В электролитах отрицательно заряженные частицы движутся к катоду, а положительные — к аноду. То же самое происходит и в газах. Если подумать, какое направление тока будет в этом случае, в голову приходит только один вариант: перемещение разнополярных электрических зарядов в замкнутой цепи происходит навстречу друг другу. Если принять это утверждение за основу, то оно снимет существующее ныне противоречие. Возможно, это вызовет удивление, но еще более 70 лет назад ученые получили документальные подтверждения того, что противоположные по знаку электрические заряды в проводящей среде действительно движутся друг другу навстречу. Данное утверждение будет справедливо для любого проводника вне зависимости от его типа: металла, газа, электролита, полупроводника. Как бы там ни было, остается надеяться, что со временем физики устранят путаницу в терминологии и примут однозначное определение того, что же все-таки такое направление движения тока. Привычку, конечно, менять сложно, но ведь нужно же наконец поставить все на свои места. _https://fb.ru/article/99367/napravlenie-toka-ot-minusa-k-plyusu-ili-naoborot_

Взаимодействие параллельных проводников с током

. (4)

Если по двум параллельным проводникам электрические токи текут в одну и ту же сторону, то наблюдается взаимное притяжение проводников.

Эталон силы тока: 1Ампер – это сила постоянного тока при длине проводников и расстоянию между ними в 1 м в вакууме, равная 210-7 Н.

30. Действие магнитного поля на движущийся заряд. Сила Лоренца

Сила, действующая со стороны магнитного поля на движущийся заряд, называется силой Лоренца.

(1)

Направление силы Лоренца, действующей на положительно заряженную частицу, может быть найдено по правилу левой руки. Если расположить левую руку так, чтобы линии индукции магнитного поля входили в ладонь, а вытянутые пальцы были направлены вдоль скорости движения частицы, то отведенный большой палец укажет направление силы Лоренца.

Сила Лоренца всегда направлена перпендикулярно скорости, поэтому при движении заряженной частицы в магнитном поле сила Лоренца работы не совершает.

Рис. 2. Движение заряженной частицы по спирали

Радиус спирали: ,

Шаг спирали:

Угловая скорость движения заряженной частицы по круговой траектории

(2)

называется циклотронной частотой. Циклотронная частота не зависит от скорости (следовательно, и от кинетической энергии) частицы. Это обстоятельство используется в циклотронах – ускорителях тяжелых частиц (протонов, ионов).

В общем случае, когда на заряженную частицу действуют электрическое и магнитное поля:

. (3)

Рис. 3. Радиационные пояса Земли

с током в магнитном поле

Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина

, (1)

при , 1 Вб = 1 Тлм2 , (2)

где – единичный вектор нормали к поверхности,– угол между направлением вектораи направлением нормали к поверхности. В системе СИ единица измерения магнитного потокаВебер (Вб).

Работа по перемещению проводника с током в магнитном поле

,

, (3)

т.е. работа по перемещению проводника с током в магнитном поле равна произ­ведению силы тока на магнитный поток, пересеченный движущимся проводником.

32. Явление электромагнитной индукции. ЭДС индукции.

Закон Фарадея. Правило Ленца. Практическая значимость

явления электромагнитной индукции

Явление электромагнитной индукции заключается в том, что в замкнутом проводящем контуре при изменении потока магнитной индукции, охватываемого этим контуром, возникает индукционный электрический ток.

Явление возбуждения тока с помощью магнитного поля открыто Фарадеем в 1831 году. «Магнетизм превратить в электричество» – такова была основная цель, к которой стремился Фарадей в течение 10 лет (1821-1831 г.г.), веривший в эту идею. Главный вывод, который он сделал: электрический ток возникает при движении катушки и магнита относительно друг друга. Вскоре после этого Фарадей создал первый генератор электрического тока. Индукционный ток в опытах Фарадея возникал при изменения магнитного потока.

(1)

Всякий раз при изменении полного магнитного потока через произвольный контур в контуре возникает электродвижущая сила, называемая электродвижущей силой индукции:

, (2)

Правило Ленца

Индукционный ток в контуре всегда имеет такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызвавшего этот индукционный ток.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий