Устройство и принцип работы диода при прямом и обратном включении

Войти

Уже зарегистрированы? Войдите здесь.

Сейчас на странице 0 пользователей

Нет пользователей, просматривающих эту страницу.

П олупроводниками являются вещества, занимающие промежуточное положение между проводниками и изоляторами, по своим электропроводящим свойствам. В полупроводниках, как и в металлах ток представляет из себя упорядоченное движение заряженных частиц. Однако, вместе с перемещением отрицательных зарядов(электронов) в полупроводниках имеет место упорядоченное перемещение положительных зарядов, т. н. – дырок.

Дырки получаются при участии ионов вещества полупроводника – атомов с сбежавшими электронами. В реальности, ионизированные атомы не покидают своего места, в кристаллической решетке. На самом деле, имеет место поэтапное изменение состояния атомов вещества, когда электроны перескакивают с одного атома, на другой. Возникает процесс, внешне выглядящий, как упорядоченное движение неких условных положительно заряженных частиц – дырок.

В обычном, чистом полупроводнике соотношение дырок и свободных электродов 50%:50%. Но стоит добавить в полупроводник небольшое количество вещества – примеси, как это соотношение претерпевает значительные изменения. В зависимости от особенностей добавленного вещества полупроводник приобретает либо ярко выраженную электронную проводимость(n-тип), либо его основными носителями становятся дырки(p-тип).

Полупроводниковый переход(p-n) формируется на стыке двух фрагментов полупроводникового материала, имеющих разную проводимость. Он представляет из себя крайне тонкую область, обедненную носителями обоих типов. p-n переход имеет незначительное сопротивление, когда направление тока – прямое, и очень большое, когда направление тока – обратное.

Обычный полупроводниковый диод состоит из одного полупроводникового перехода, снабженного двумя выводами – анодом(положительным электродом) и катодом – отрицательным электродом. Соответственно, диод обладает свойством односторонней проводимости – он хорошо проводит ток в прямом направлении и плохо в обратном.

Что это означает на практике? Представим себе электрическую цепь, состоящую из батарейки и лампочки накаливания, подключенной последовательно через полупроводниковый диод. Лампочка будет гореть только в том случае, если анод (положительный электрод) подключен к плюсу источника питания (батарейки) а катод (отрицательный электрод) к минусу – через накальную нить лампочки.

Это и является прямым включением полупроводникового диода. Если поменять полярность источника питания, включение диода окажется обратным – лампочка гореть не будет

Обратите внимание как выглядит обозначение полупроводникового диода на схеме – треугольная стрелочка, указывающая прямое включение, совпадает с общепринятым в электротехнике направлением тока – от плюса источника питания, к минусу. Вертикальная черточка примыкающая к ней символизирует преграду для движения тока в обратном направлении

Существует одно обязательное условие для нормальной работы любого полупроводникового диода. Напряжение источника питания должно превышать некоторый порог (величину потенциала внутреннего смещения p-n перехода). Для выпрямительных диодов он как правило – меньше 1 вольта, для германиевых высокочастотных диодов порядка 0,1 вольта, для светодиодов может превышать 3 вольта. Это свойство полупроводниковых диодов можно использовать при создании низковольтных стабилизированных источников питания.

Если диод подключить обратно и постепенно повышать напряжение источника питания, в некоторый момент обязательно наступит обратный электрический пробой p-n перехода. Диод начнет пропускать ток и в обратном направлении, а переход окажется испорченным. Величина максимального допустимого обратного напряжения (Uобр.и.) широко разнится у различных типов полупроводниковых диодов и является очень важным параметром.

Вторым, не менее важным параметром можно назвать предельное значение прямого тока-Uпр. Этот параметр напрямую зависит от величины падения напряжения на переходе полупроводникового диода, материала полупроводника и теплообменных характеристик корпуса.

Разновидности диодов.

Помимо способности пропускать ток только в одном направлении, p-n переход обладает рядом других интересных особенностей. Например, способностью излучать(в т. ч. и в видимом диапазоне) при протекании тока в прямом направлении и генерировать эл. ток под воздействием излучения. Эта особенность используется при реализации таких электронных элементов как светодиоды, фотодиоды и фотоэлементы. Кроме того, любой p-n переход обладает еще и электрической емкостью, а кроме того, возможностью ее изменять с помощью напряжения приложенного в обратном направлении. Используя ее удалось создать такие полезные элементы как ВАРИКАПЫ.

Варикапы.

Итак, p-n переход обладает электрической емкостью, величина которой зависит от его площади и ширины. Если подавать напряжение в обратном направлении – переход смещается, площадь остается неизменной, но ширина увеличивается. Емкость, при этом соответственно – уменьшается. Появляется возможность, изменяя величину приложенного напряжения, эту емкость регулировать. Электронные элементы(диоды, по сути) созданные на этом принципе называют – варикапами.

Варикапы используются в радиоаппаратуре вместо обычных конденсаторов переменной емкости для перестройки частоты колебательных контуров. Приемущество Применение варикапов позволило значительно снизить габариты и повысить эффективность блоков селекции радиоприемных устойств, относительно просто и недорого реализовать автоматизацию процессов настройки(проводимых ранее вручную).

Диоды Шоттки.

Диод Шоттки(диод с барьером Шоттки) — полупроводниковый диод с малым падением напряжения(0,2—0,4 вольт) при прямом включении. Назван в честь немецкого физика Вальтера Шоттки. В диодах Шоттки в отличие от обычных диодов,вместо p-n перехода используется переход металл-полупроводник. Это дает ряд особых преимуществ – пониженное падение напряжения при прямом включении, очень маленький заряд обратного восстановления.

Последнее объясняется тем, что в отличии от обычных диодов диоды Шоттки работают только на основных носителях, а их быстродействие ограничивается лишь барьерной емкостью. Диоды Шоттки наиболее целесообразно использовать в быстродействующих импульсных цепях, для выпрямления малых напряжений высокой частоты, в высокочастотных смесителях, в ключах и коммутаторах.

Светодиоды.

При протекании прямого тока через любой p-n переход(любого диода!) происходит генерация фотонов. Это является следствием циклической рекомбинации – восстановления атомов вещества в процессе перемещения основных носителей тока. Электронные элементы служащие для генерации света и основанный на этом принципе называется соответственно – светодиодами. Светодиоды используют для индикации, передачи информации, в составе таких электронных приборов как оптопары.

К.П.Д. и яркость современных светодиодов настолько высоки, что на настоящий момент они являются наиболее перспективными источниками искуственного освещения. В зависимости от материала выбранного в качестве полупроводника светодиоды излучают на разных длинах волн. ИК – диоды излучают в инфракрасной области, индикаторные и осветительные светодиоды в видимой части спектра(зеленые, красные, желтые и т. п.). Наиболее высоким К.П.Д. отличаются светодиоды излучающее в ультрафиолетовой области. Интересно, что как раз этот тип наиболее часто применяется для освещения. Белый свет получается при использовании специального люминофора, преобразующего ультрафиолет.

Интенсивность излучения светодиода возрастает при увеличении тока протекающего через p-n переход, до определенного предела. После его достижения сетодиод выходит из строя. Поэтому, для нормальной работы необходимо ограничивать ток. Как правило, это реализуется с помощью последовательного подключения резистора.

Стабисторы.

Существующие стабилитроны имеют ограничение по минимальному напряжению стабилизации(около 3 В). Что делать, если необходим источник стабилизированного напряжения до 3-х вольт? Использовать прямую ветвь Вольт – Амперной Характеристики диода(ВАХ). В области прямого смещения p-n-перехода напряжение на нем может иметь значение 0,7. 2 В(в зависимости от материала полупроводника) и мало зависит от тока. Диоды специально используемые в этом качестве, называют – СТАБИСТОРАМИ.

Варианты исполнения

Стабилитрон

На сегодняшний день полупроводниковый диод может быть представлен различными видами устройств. Их классификация основана на принципе действия, материале изготовления и т.д. Существует и классификация, которая основана на области применения. Согласно ней выделяют следующие типы диодов:

  • импульсные;
  • стабилитроны;
  • точечные;
  • сплавные;
  • лазер;
  • светодиоды;
  • варикапы и прочие типы.

Специальный реферат о каждом виде расскажет более детально, указав особенности работы, вольт амперные характеристики, свойства и т.д. для каждого типа.

Помимо этого существует и друга классификация данной продукции, основанная на функциональном предназначении:

  • выпрямительный. Такие диоды предназначены для того чтобы выпрямлять переменный ток. Здесь коэффициент выпрямления будет равен отношению прямого и обратного токов (напряжение равное);
  • высокочастотный. Как правило, с ними проводят исследование, связанное с работой приборов сверхвысокой и высокой частоты. Часто применяются для детектирования, а также моделирования сверхвысокочастотных колебаний. Частота может доходить до сотен мегагерц;
  • варикапы. Их принцип работы базируется на изменении свойств емкости электронно-дырочного перехода. Емкость может меняться в зависимости от обратного прикладываемого напряжения;
  • туннельный. Здесь усиление туннельного эффекта p-n-перехода достигается за счет использования больших концентраций различных легирующих примесей.

Данная классификация применяется чаще всего. Также типы диодов различаются по конструкции. Они могут быть:

  • плоскими;
  • точечными;
  • микросплавными.

По делению в зависимости от мощности, выделяют такие типы:

  • мощные;
  • средней мощности;
  • маломощные.

По параметру частоты данная продукция делится на:

  • высокочастотные;
  • низкочастотные;
  • СВЧ.

Разнообразие диодов

Полупроводниковые диоды имеют большое количество делений по классам, мощностям, частотам и прочим параметрам, что демонстрирует их широкое применение.

Как определить полярность светодиода — 2 простых способа

Светодиод – полупроводниковый оптический прибор, пропускающий электрический ток в прямом направлении. При подключении инверсионно тока в цепи не будет, и, естественно, не произойдет свечения. Чтобы этого не случилось, нужно соблюдать полярность светодиода.

Светодиод на схеме обозначается треугольником в кружке с поперечной чертой – это катод, который имеет знак «-» (минус). С противоположной стороны находится анод, имеющий знак «+» (плюс).

Обозначение светодиода в схеме

В монтажных схемах должна присутствовать цоколевка (или распиновка) выводов для идентификации всех контактов соединения.

Как определить полярность диода, держа в руках крохотную лампочку? Ведь для правильного подключения нужно знать, где у него минус, а где плюс. Если распайка выводов будет попутана, схема не заработает.

Визуальный метод определения полярности

Первый способ определения – визуальный. У диода два вывода. Короткая ножка будет катодом, анод у светодиода всегда длиннее. Запомнить легко, так как присутствует начальная буква «к» и в том и другом слове.

Длина выводов светодиода

Когда оба вывода согнуты или прибор снят с другой платы, их длину бывает сложно определить. Тогда можно попробовать разглядеть в корпусе небольшой кристалл, который выполнен из прозрачного материала. Он располагается на небольшой подставке. Этот вывод соответствует катоду.

Также катод светодиода можно определить по небольшой засечке. В новых моделях светодиодных лент и ламп применяются полупроводники для поверхностного монтажа. Имеющийся ключ в виде скоса указывает на то, что это отрицательный электрод (катод).

Иногда на светодиодах стоит маркировка «+» и «-». Некоторые производители отмечают катод точкой, иногда линией зеленого цвета. Если нет никакой отметки или ее трудно разглядеть из-за того, что светодиод был снят с другой схемы, нужно произвести тестирование.

Тестирование с применением мультиметра или аккумулятора

Хорошо, если под рукой есть мультиметр. Тогда определение полярности светодиода произойдет за одну минуту. Выбрав режим омметра (измерение сопротивлений), нетрудно произвести следующее действие. Приложив щупы к ножкам светодиода, производится замер сопротивления. Красный провод должен подключаться к плюсу, а черный – к минусу.

При правильном включении прибор выдаст значение, примерно равное 1,7 кОм, и будет наблюдаться свечение. При обратном включении на дисплее мультиметра отобразится бесконечно большая величина. Если проверка показывает, что в обе стороны диод показывает малое сопротивление, то он пробит, и его следует утилизировать.

Определение полярности светодиода при помощи мультиметра

В некоторые приборах существует специальный режим. Он предназначен для проверки полярности диода. Прямое включение будет сигнализировать подсветкой диода. Этот метод подходит для красных и зеленых полупроводников.

Синие и белые светодиоды выдают индикацию только при напряжении более 3 вольт, поэтому нельзя достигнуть нужного результата. Для их тестирования можно использовать мультиметры типа DT830 или 831, в которых предусмотрен режим определения характеристик транзисторов.

Используя PNP-часть, один вывод светодиода вставляют в коллекторное гнездо, второй – в эмиттерное отверстие. В случае прямого подключения появится индикация, инверсионное включение не даст подобного эффекта.

Как определить полярность светодиода, если под рукой нет мультиметра? Можно прибегнуть к обычной батарейке или аккумулятору. Для этого понадобится еще любой резистор. Это нужно для защиты светодиода от пробоя и выхода из строя. Последовательно соединенный резистор, величина сопротивления которого должна быть примерно 600 Ом, позволит ограничить ток в цепи.

Проверка полярности при помощи источника питания

И еще несколько советов:

  • если известна полярность светодиода, впредь нельзя подавать на него обратное напряжение. В противном случае есть вероятность пробоя и выхода из строя. При правильной эксплуатации светодиод будет служить исправно, так как он долговечен, а также его корпус хорошо защищен от попадания влаги и пыли;
  • некоторые типы светодиодов чувствительны к воздействию статического электричества (синие, фиолетовые, белые, изумрудные). Поэтому их нужно предохранять от влияния «статики»;
  • при тестировании светодиода мультиметром желательно это действие произвести быстро, касание к выводам должно быть кратковременным, чтобы избежать пробоя диода и вывода его из строя.

Вольт-амперная характеристика полупроводникового диода.

Зависимость тока, проходящего через p-n переход, от величины и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода.

На графике ниже изображена такая кривая. По вертикальной оси в верхней части обозначены значения прямого тока (Iпр), а в нижней части — обратного тока (Iобр). По горизонтальной оси в правой части обозначены значения прямого напряжения Uпр, а в левой части – обратного напряжения (Uобр).

Вольт-амперная характеристика состоит как бы из двух ветвей: прямая ветвь, в правой верхней части, соответствует прямому (пропускному) току через диод, и обратная ветвь, в левой нижней части, соответствующая обратному (закрытому) току через диод.

Прямая ветвь идет круто вверх, прижимаясь к вертикальной оси, и характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения. Обратная ветвь идет почти параллельно горизонтальной оси и характеризует медленный рост обратного тока. Чем круче к вертикальной оси прямая ветвь и чем ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. Наличие небольшого обратного тока является недостатком диодов. Из кривой вольт-амперной характеристики видно, что прямой ток диода (Iпр) в сотни раз больше обратного тока (Iобр).

При увеличении прямого напряжения через p-n переход ток вначале возрастает медленно, а затем начинается участок быстрого нарастания тока. Это объясняется тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1 – 0,2В, а кремниевый при 0,5 – 0,6В.

Например. При прямом напряжении Uпр = 0,5В прямой ток Iпр равен 50mA (точка «а» на графике), а уже при напряжении Uпр = 1В ток возрастает до 150mA (точка «б» на графике).

Но такое увеличение тока приводит к нагреванию молекулы полупроводника. И если количество выделяемого тепла будет больше отводимого от кристалла естественным путем, либо с помощью специальных устройств охлаждения (радиаторы), то в молекуле проводника могут произойти необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток p-n перехода ограничивают на уровне, исключающем перегрев полупроводниковой структуры. Для этого используют ограничительный резистор, включенный последовательно с диодом.

У полупроводниковых диодов величина прямого напряжения Uпр при всех значениях рабочих токов не превышает: для германиевых — 1В; для кремниевых — 1,5В.

При увеличении обратного напряжения (Uобр), приложенного к p-n переходу, ток увеличивается незначительно, о чем говорит обратная ветвь вольтамперной характеристики. Например. Возьмем диод с параметрами: Uобр max = 100В, Iобр max = 0,5 mA, где:

Uобр max – максимальное постоянное обратное напряжение, В; Iобр max – максимальный обратный ток, мкА.

При постепенном увеличении обратного напряжения до значения 100В видно, как незначительно растет обратный ток (точка «в» на графике). Но при дальнейшем увеличении напряжения, свыше максимального, на которое рассчитан p-n переход диода, происходит резкое увеличение обратного тока (пунктирная линия), нагрев кристалла полупроводника и, как следствие, наступает пробой p-n перехода.

Что обозначает маркировка

Маркировка на диодах

Каждый полупроводниковый диодный элемент обладает определенной маркировкой. Она может отличаться в зависимости от характеристик изделия, его вида, мощности и прочих параметров.

Маркировка, которая нанесена на такого рода компоненты электрических схем, является аббревиатурой и отражает параметры устройства. К примеру, маркировка КД196В расшифровывается следующим образом:

  • кремниевый диод, имеющий напряжение пробоя до 0,3 В;
  • напряжение 9,6 (цифра 96);
  • модель третьей разработки.

Чтобы приобрести необходимый полупроводник, нужно внимательно изучить маркировку и знать, как она расшифровывается.

Основные виды

Диоды принято классифицировать по нескольким параметрам. В зависимости от рабочих частот, они могут быть низко-, высокочастотными, а также способными функционировать в условиях сверхвысоких частот. Также существует деление и в соответствии с конструктивными особенностями, где можно выделить следующие виды диодов:

  • Диод Шоттки — вместо привычного p-n-перехода используется металл. С одной стороны, это позволяет добиться минимальных потерь напряжения при прямом включении. Однако с другой при высоком обратном токе, изделие быстро выходит из строя.
  • Стабилитрон — позволяет стабилизировать напряжение.
  • Стабистор — отличается от стабилитрона меньшей зависимостью напряжения от тока.
  • Диод Гана — лишен p — n -перехода, вместо которого используется особый кристалл. Используется для работы в диапазоне сверхвысоких частот.
  • Варикап — представляет собой сочетание диода с конденсатором. Емкость изделия зависит от обратного напряжения в области p — n -перехода, а применяется он при создании колебательных контуров.
  • Фотодиод — попадание светового потока на токовый переход приводит к созданию в нем разности потенциалов. Если замкнуть в этот момент цепь, то в ней появится ток.
  • Светодиод — при достижении определенного показателя тока в p — n -переходе, устройство начинает излучать световой поток.

Использование

Полупроводниковый диод, двухэлектродный электронный прибор на основе полупроводникового (ПП) кристалла. Понятие «П. д.» объединяет различные приборы с разными принципами действия, имеющие разнообразное назначение. Система классификации П. д. соответствует общей системе классификации полупроводниковых приборов. В наиболее распространённом классе электропреобразовательных П. д. различают: выпрямительные диоды, импульсные диоды, стабилитроны, диоды СВЧ (в т. ч. видеодетекторы, смесительные, параметрические, усилительные и генераторные, умножительные, переключательные). Среди оптоэлектронных П. д. выделяют фотодиоды, светоизлучающие диоды и ПП квантовые генераторы.

Наиболее многочисленны П. д., действие которых основано на использовании свойств электронно-дырочного перехода (р—n-перехода). Если к р—n-переходу диода (рис. 1) приложить напряжение в прямом направлении (т. н. прямое смещение), т. е. подать на его р-область положительный потенциал, то потенциальный барьер, соответствующий переходу, понижается и начинается интенсивная инжекция дырок из р-области в n-область и электронов из n-области в р-область — течёт большой прямой ток (рис. 2). Если приложить напряжение в обратном направлении (обратное смещение), то потенциальный барьер повышается и через р—n-переход протекает лишь очень малый ток неосновных носителей заряда (обратный ток). На рис. 3 приведена эквивалентная схема такого П. д.

На резкой несимметричности вольтамперной характеристики (ВАХ) основана работа выпрямительных (силовых) диодов. Для выпрямительных устройств и др. сильноточных электрических цепей выпускаются выпрямительные П. д., имеющие допустимый выпрямленный ток Iв до 300 а и максимальное допустимое обратное напряжение U*обр от 20—30 в до 1—2 кв. П. д. аналогичного применения для слаботочных цепей имеют Iв < 0,1 а и называются универсальными.

При напряжениях, превышающих U*o6p, ток резко возрастает, и возникает необратимый (тепловой) пробой р—n-перехода, приводящий к выходу П. д. из строя. С целью повышения U*обр до нескольких десятков кв используют выпрямительные столбы, в которых несколько одинаковых выпрямительных П. д. соединены последовательно и смонтированы в общем пластмассовом корпусе. Инерционность выпрямительных диодов, обусловленная тем, что время жизни инжектированных дырок составляет > 10-5—10-4 сек, ограничивает частотный предел их применения (обычно областью частот 50—2000 гц). Использование специальных технологических приёмов (главным образом легирование германия и кремния золотом) позволило снизить время переключения до 10-7—10-10 сек и создать быстродействующие импульсные П. д., используемые, наряду с диодными матрицами, главным образом в слаботочных сигнальных цепях ЭВМ.

Будет интересно Что такое ультрафиолетовые светодиоды?

Классификация

Полупроводниковые диоды, выпускаемые промышленностью, по их назначению можно разделить на следующие основные группы:

  • силовые,
  • опорные (стабилитроны),
  • фотодиоды,
  • импульсные,
  • высокочастотные,
  • параметрические.

Особый интерес представляют туннельные диоды. Маркировку полупроводниковых диодов, производство которых освоено после 1965 г., определяют четыре элемента. Первым элементом обозначения является буква, которая указывает материал используемого полупроводника: Г — германий; К — кремний; А — арсенид галлия. Если первым элементом обозначения является цифра (1 вместо Г, 2 вместо К и 3 вместо А), то это указывает, что приборы могут работать при повышенных температурах (например, приборы с кремниевым основанием, обозначенные цифрой 2, могут работать при температуре до 120°С).

Вторым элементом маркировки является буква, определяющая назначение прибора: А — сверхвысокочастотные диоды; Д — выпрямительные универсальные, импульсные диоды; В — выпрямительные столбы (последовательное соединение ряда диодов); С — стабилитроны; И — туннельные диоды; Ф—фотодиоды и т. д. Третий элемент маркировки (число) характеризует электрические свойства прибора. Выпрямительные низкочастотные диоды обозначаются цифрами от 101 до 399, универсальные — от 401 до 499, импульсные — от 501 до 599, усилительные туннельные диоды —от 101 до 199, генераторные туннельные диоды — от 201 до 299, переключающие туннельные диоды — от 301 до 399, стабилитроны — от 101 до 999.

Четвертый элемент маркировки (буква) определяет разновидность типа прибора из данной группы приборов. Например, 1Д505Б — германиевый импульсный диод, разновидность типа Б, или 3И302Б — арсенид-галлиевый туннельный диод, разновидность типа Б. Полупроводниковые диоды, разработка которых была закончена до 1965 г., обозначаются тремя элементами: первым элементом является буква Д; вторым элементом — число, указывающее диапазоны частот и исходный материал, из которого изготовлен диод; третий элемент определяет разновидность прибора.

Стабилитронами (опорными диодами) называются полупроводниковые диоды предназначенные для стабилизации постоянного напряжения. Для стабилизации напряжения в стабилитронах используют обратную ветвь вольт-амперной характеристики в области электрического пробоя, для этого их включают в обратном направлении. При изменении тока протекающего через стабилитрон от значения Iстmin до Iстmax напряжение на нем почти не изменяется.

Полупроводниковый диод.

Стабилитроны стабилизируют напряжение от 3,5 В, а для стабилизации меньшего напряжения используют стабисторы. В стабисторах используют прямую ветвь вольт-амперной характеристики, поэтому их включают в прямом направлении. Импульсным называется диод, который предназначен для работы в импульсных схемах. В прямом направлении импульсный диод хорошо проводит электрический ток. При обратном включении такого диода, обратный ток в нем резко увеличивается, а через короткий промежуток времени исчезает. Таким образом получается электрический импульс.

Прямое и обратное напряжение диода.

Напряжение, при котором диод открывается и через него идет прямой ток называют прямым

(Uпр), а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток называютобратным (Uобр).

При прямом напряжении (Uпр

) сопротивление диода не превышает и нескольких десятков Ом, зато при обратном напряжении (Uобр ) сопротивление возрастает до нескольких десятков, сотен и даже тысяч килоом. В этом не трудно убедиться, если измерить обратное сопротивление диода омметром.

Сопротивление p-n

перехода диода величина не постоянная и зависит от прямого напряжения (Uпр ), которое подается на диод. Чембольше это напряжение, темменьшее сопротивление оказываетp-n переход, тембольший прямой токIпр течет через диод. В закрытом состоянии на диодепадает практически все напряжение, следовательно, обратный ток, проходящий через негомал , а сопротивлениеp-n переходавелико .

Например. Если включить диод в цепь переменного тока, то он будет открываться при положительных

полупериодах на аноде, свободно пропускаяпрямой ток (Iпр), и закрываться приотрицательных полупериодах на аноде, почти не пропуская ток противоположного направления –обратный ток (Iобр). Эти свойства диодов используют дляпреобразования переменного тока в постоянный , и такие диоды называютвыпрямительными .

Устройство тиристора

Фиксирование устойчивого состояния прибора возможно благодаря наличию ряду особенностей во внутреннем строении устройства. На представленной ниже схеме можно в этом убедиться:

На этой структуре становится очевидным тот факт, что тиристор представлен в виде 2-х простых электронных транзисторов, которые не похожи по своей структуре, однако связаны между собой. Кроме того, ключевую роль в составе полупроводникового электроприбора играют три следующих звена:

  • Катод;
  • Анод;
  • Электрод управления.

Из-за того, что тиристор имеет четыре последовательно-соединенных диода, его переходный слой имеет такую форму: (р) — (п) — (р) — (п). Этот факт объясняет пропускную способность I, который течет лишь в единственной направленности направлении: от плюса к минусу.

Говоря и описывая внешний вид тиристоров, надо сказать, что они производятся из разных корпусов, поэтому исключен вариант с простым отводом тепла, однако, из-за наличия массивного металлического корпуса, способны выдерживать большие токи.

Маркировка

Для того чтобы определить вид, узнать характеристику полупроводникового диода, производители наносят специальные обозначения на корпус элемента. Она состоит из четырёх частей.

На первом месте — буква или цифра, означающая материал, из которого изготовлен диод. Может принимать следующие значения:

  • Г (1) — германий;
  • К (2) — кремний;
  • А (3) — арсенид галлия;
  • И (4) — индий.

На втором — типы диода. Они тоже могут иметь разное значение:

  • Д — выпрямительные;
  • В — варикап;
  • А — сверхвысокочастотные;
  • И — туннельные;
  • С — стабилитроны;
  • Ц — выпрямительные столбы и блоки.

На третьем месте располагается цифра, указывающая на область применения элемента.

Четвёртое место — числа от 01 до 99, означающее порядковый номер разработки.

Также на корпус могут быть нанесены и дополнительные обозначения. Но, как правило, они используются в специализированных приборах и схемах.

Для удобства восприятия диоды могут маркироваться также и разнообразными графическими символами, например, точками и полосками. Особой логики в таких рисунках нет. То есть, чтобы определить, что это за диод, придется заглянуть в специальную таблицу соответствия.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий